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Abstract: Let n, a and b be positive integers. The pair (a, b) is called integer
partition of n into Diophantine pair if n = a+ b, ab+1 is a perfect square and
a > b. In this paper we give, for any positive integer n, a closed formula of the
number of integer partitions into Diophantine pairs, denoted by qD(n, 2).
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1 Introduction

Let n be an integer, a partition of n is a non increasing sequence of positive integers
n1, n2, . . . , nk whose sum is n, that is n = n1 + · · · + nk, with n1 ≥ · · · ≥ nk ≥ 1. Each
ni is called a part of the partition. The function p(n) denotes the number of partitions of n.

The study of partitions has fascinated several great mathematicians such as Leibniz,
Euler, Legendre, Ramanujan, Hardy, Rademacher, Sylvester, Selberg and Dyson, who
are interested in many, many number of partitions that satisfy some conditions, denoted
p(n | [condition]), such as Eulers’s identity:

p(n | [odd parts]) = p(n | [distinct parts]).

Many other interesting problems in the theory of partitions remain unsolved up till now,
for example despite a good deal of effort, is to find a simple criterion for deciding whether
p(n) is even or odd. There is a vast literature on integer partitions, for more details see
for instance [1], [3], [4], [5], [6], [10], [11], [12] and [13].

Now let’s move on to another combinatorial concept. A set {a1, a2, ..., am} of m positive
integers is called a Diophantine m-tuple if aiaj + 1 is a perfect square for all i, j with
1≤ i < j ≤ m. The set {1, 3, 8, 120} was the first example of a Diophantine quadruple
found by Fermat. A folklore conjecture says that there does not exist a Diophantine
quintuple. Arkin, Hoggatt and Strauss [2] shown in general, that for a given Diophantine
triple {a, b, c}, the set {a, b, c, d+} is always a Diophantine quadruple, where d+ = a+b+c+
2abc+2rst, and r, s, t are the positive integers satisfying ab+1 = r2, ac+1 = s2, bc+1 = t2.
The such Diophantine quadruple is called regular.

Dujella [8] proved that there does not exist a Diophantine sextuple and that there exist
only finitely many Diophantine quintuples. For more on Diophantine m-tuples results
and its history, see for instance Dujella’s webpage [9].

The purpose of this paper is to make a link between integer partitions and Diophantine
m−tuples, more precisely the main goal of this paper is to find the number of partitions
of n into two distinct parts, forming a Diophantine pairs.

Definition 1 A partition of n into exactly two distinct parts, forming a Diophantine pair,
is an integral solution of the following system:





n = a + b,
ab + 1 = s2,
a > b ≥ 1.

(1)
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Throughout this paper, qD(n, 2) denotes the number of solutions of system (1).

Example 1 Among 49 partitions of n = 100 into 2 distinct parts, the partitions:

100 = 51 + 49,
= 60 + 40,
= 99 + 1,

are the only ones which form a Diophantine pairs:

51.49 + 1 = 502,
60.40 + 1 = 492,
99.1 + 1 = 102.

The organization of this paper is as follows: In Sect. 2 we give an upper bound for qD(n, 2),
the number of integer partitions into Diophantine pairs. In Sect. 3 we collect some results
to prepare the main result. Section 4 combines the lemmas from Sect 3 to prove the main
theorem. Finally, Sect. 5 gives some effective calculus with some examples.

2 Upper bound for qD(n, 2)

Theorem 1 For n ≥ 3, we have

qD(n, 2) ≤
⌊√

n2 + 4

2

⌋
− ⌈√

n
⌉

+ 1,

where bwc and dwe denotes the floor and the ceiling of w respectively.

Proof. From (1), we have,

− b2 + nb + 1 = s2. (2)

Since 1 ≤ b < n/2, and the function f : t 7→ −t2 + nt + 1 is increasing on the interval[
1,

n

2

[
, it follows

n ≤ −b2 + nb + 1 <
n2 + 4

4
·

Thus, we have
√

n ≤ s <

√
n2 + 4

2
·

Hence, the result follows.
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3 Some Lemmas

We now present some preliminary results to prepare the main theorem. Let Sn be the set
of all solutions of the following Diophantine equation:

(n− 2x)2 + (2y)2 = n2 + 4,

where (x, y) ∈ N∗ × N∗ with n− 2x > 0·

Lemma 2 We have

qD(n, 2) = card(Sn).

Proof. From (2) we get

(n− 2b)2 + (2s)2 = n2 + 4.

This shows that we have a 1-1 correspondence between Sn and the set of all solutions of
System (1).

Let define rN2 (n) and rZ2 (n) to be the number of solutions of the equation x2 + y2 = n, in
N2 and Z2 respectively. It is clear that if n is not a perfect square, then we have:

rN2 (n) =
rZ2 (n)

4
· (3)

In his work on number theory, C. G. J. Jacobi established the following result [7]:

rZ2 (n) = 4(τ1[4](n)− τ3[4](n)), (4)

where,

τ1[4](n) =
∑

d/n
d≡1(mod 4)

1 and τ3[4](n) =
∑

d/n
d≡3(mod 4)

1.

Since n2 + 4 is never a perfect square, from (3) and (4) we get

rN2 (n2 + 4) = τ1[4](n
2 + 4)− τ3[4](n

2 + 4). (5)

The next Lemma, shows that τ3[4](n
2 + 4) = 0, for n ≥ 1.

Lemma 3 All odd divisors of n2 + 4 are congruent to 1 modulo 4, for n ≥ 1.
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Proof. Let v2(n) denotes the 2-adic order of n. Then n2 + 4 = 2v2(n2+4)M , with M odd.
The result holds if M = 1. Suppose M ≥ 3 and let p be an odd prime divisor of M . Since
p and 2 are coprime, it exists u ∈ Z, such that 2u ≡ 1 (mod p), and so

4u2 ≡ 1 (mod p). (6)

Since n2 + 4 ≡ 0 (mod p), we obtain from (6)

(un)2 ≡ −1 (mod p).

By using the first supplement to quadratic reciprocity, we get finally p ≡ 1 (mod 4), which
completes the proof.
The following corollary is direct consequence from (5) and Lemma 3.

Corollary 4 For any positive integer n ≥ 1, we have

rN2 (n2 + 4) =
τ(n2 + 4)

1 + v2(n2 + 4)
·

4 Main result

We are now ready to formulate the main result as follows:

Theorem 5 For n ≥ 1, we have

qD(n, 2) =
2τ(n2 + 4)

3 + (−1)n+1 + 2v2(n2 + 4)
− 1.

Proof. Let Tn = {(a, b) ∈ N2 : a2 + b2 = n2 + 4}. We distingue two cases: Case 1. If n

is odd, let
T 1

n = {(a, b) ∈ N2 : a2 + b2 = n2 + 4, a odd and b even},

T 2
n = {(a, b) ∈ N2 : a2 + b2 = n2 + 4, a even and b odd}.

From corollary 4, we have
card(Tn) = τ(n2 + 4). (7)

It is clear that T 1
n ∩ T 2

n = ∅ and Tn = T 1
n ∪ T 2

n . Then,

card(Tn) = 2 card(T 1
n). (8)

Notice that (x, y) ∈ Sn if and only if (x, y) ∈ T 1
n \ {(n, 2)}. Which implies

card(Sn) = card(T 1
n)− 1. (9)
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It follows from (7), (8) and (9)

card(Sn) =
τ(n2 + 4)

2
− 1.

Case 2. If n is even, so let n = 2m, Sn becomes the set of all solutions of the following
Diophantine equation: (m− x)2 + y2 = m2 + 1, where (x, y) ∈ N∗ × N∗ with m− x > 0.
Let then,

Tm = {(a, b) ∈ N2 : a2 + b2 = m2 + 1}.
Since m2 + 1 is never a perfect square, we have

card(Tm) =
τ(m2 + 1)

1 + v2(m2 + 1)
·

Notice that (x, y) ∈ Sn if and only if (x, y) ∈ Tm \ {(m, 1)}. Then,

card(Sn) = card(Tm)− 1

=
τ(m2 + 1)

1 + v2(m2 + 1)
− 1.

Since n2 + 4 = 4(m2 + 1), it exists M a positive odd integer such that:

n2 + 4 = 2v2(n2+4)M and m2 + 1 = 2v2(m2+1)M.

Then,
τ(m2 + 1)

1 + v2(m2 + 1)
=

τ(n2 + 4)

1 + v2(n2 + 4)
·

Thus

card(Sn) =
τ(n2 + 4)

1 + v2(n2 + 4)
− 1.

Finally, the Theorem holds by virtue of Lemma 2.

Remark 6 If we note that

v2

(
n2 + 4

)
=





0 if 2 - n,

3 if 2 ‖ n,

2 if 4 | n,

Theorem 5 can be reformulated as follows:

Theorem 7 For n ≥ 1, we have

qD(n, 2) =





τ (n2 + 4)

2
− 1 if 2 - n,

τ (n2 + 4)

4
− 1 if 2 ‖ n,

τ (n2 + 4)

3
− 1 if 4 | n,
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As an immediate consequence of Theorem 7, we obtain the following corollary:

Corollary 8 For any positive integer n ≥ 1, we have

τ
(
n2 + 4

) ≡ 0





(mod 2) if 2 - n,

(mod 4) if 2 ‖ n,

(mod 3) if 4 | n.

5 Effective calculus and some examples

Example 2 Let n = 1000. We have n2+4 = 22.532.89, so τ(n2+4) = 18. From Theorem
7, we get

qD(1000, 2) = 5.

The such partitions are:
1000 = 501 + 499,

= 720 + 280,
= 765 + 235,
= 924 + 76,
= 949 + 51,

of course, all of these partitions verify the Diophantine condition:

501.499 + 1 = 5002,
720.280 + 1 = 4492,
765.235 + 1 = 4242,
924.76 + 1 = 2652,
949.51 + 1 = 2202.

Example 3 Let n = 2039, a prime number. Since n2 +4 = 52.166301, we get τ(n2 +4) =
6. Therefore, from Theorem 7, we obtain

qD(2039, 2) = 2.

The such partitions are:
2039 = 1304 + 735,

= 1632 + 407,

and
1304.735 + 1 = 9792,
1632.407 + 1 = 8152.

By using a computer algebra package, Theorem 7 allows us to obtain qD(n, 2) for large
values of n. The following table is introduced to illustrate a few:
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n 1500 2000 2500 3000 3500 4000 4500 5000 5500 10000 20000
qD(n, 2) 1 3 3 7 3 3 3 3 7 11 3
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