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Abstract: Using several arguments, some authors showed that the number
of non-isometric triangles inscribed in a regular n-gon equals {n2/12}, where
{x} is the nearest integer to x. In this paper, we take back the same prob-
lem, but concerning the number of ordered and non-ordered non-isometric
convex quadrilaterals, for which we give simple closed formulas, using Parti-
tion Theory. The paper is complemented by a study of two further kinds of
quadrilaterals called proper and improper non-isometric convex quadrilater-
als, which allows to give a connecting formula between the number of triangles
and ordered quadrilaterals, which can be considered as a new combinatorial
interpretation of certain identity in Partition Theory.
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1 Introduction

In the 1938’s, Norman Anning from university of Michigan proposed the following problem [6]:
”From the vertices of a regular n-gon three are chosen to be the vertices of a triangle. How
many essentially different possible triangles are there?”. For any given positive integer
n ≥ 3, let ∆ (n) denotes the number of such triangles.

Using a geometric argument, the solution proposed by J.S. Frame, from Brown university,
shown that ∆ (n) = {n2/12}, where {x} is the nearest integer to x. After that, other
solutions were proposed by some authors, such as F. C. Auluck, from Dyal Singh college
[2].

In 1978 Richard H. Reis, from the Southeastern Massachusetts university posed the fol-
lowing natural general problem: From the vertices of a regular n-gon k are chosen to be
the vertices of a k-gon. How many incongruent convex k-gons are there?

Let us first precise that two k-gons are considered congruent if they are coincided at the
rotation of one relatively other along the n-gon and (or) by reflection of one of the k-gons
relatively some cord, that what we call non-isometric k-gons.

For any given positive integers 2 ≤ k ≤ n, let R (n, k) denotes the number of such k-gons.
In 1979 Hansraj Gupta [5] gave the solution of Reis’s problem, using the Möbius inversion
formula.

Theorem 1
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where hk ≡ k (mod 2) and ϕ(n) the Euler function.

One can find the first values of R(n, k) in the Online Encyclopedia of Integer Sequences
(OEIS) [7] as A004526 for k = 2, A001399 for k = 3, A005232 for k = 4 and A032279 for
k = 5.

The immediate consequence of both Gupta’s and Frame’s Theorems is the following iden-
tity: {
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where χ(3/n) = 1 if n ≡ 0 (mod 3), 0 otherwise.

In 2004 V.S. Shevelev gave a short proof of Theorem 1, using a bijection between the set
of convex polygons with the tops in the n-gon splitting points and the set of all (0,1)-
configurations with the elements in these points [8].

The aim of this paper is to enumerate the number of two kinds of non-isometric convex
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quadrilaterals, inscribed in a regular n-gon, the ordered ones which have the sequence of
their sides’s sizes ordered, denoted by RO (n, 4) and those which are non-ordered denoted
by RO (n, 4), using the Partition Theory. As an example, let us consider the following
figure showing three quadrilaterals inscribed in a regular 12-gon, the first is not convex, the
second is ordered while the third is not. Observe that the second quadrilateral generates
1+1+3+3 as partition of 8 in four parts, that is why it is called ordered.
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Figure 1

2 Notations and preliminaries

We denote by Gn a regular n-gon and by N the set of nonnegative integers. The partition
of n ∈ N into k parts is a tuple π = (π1, . . . , πk) ∈ N

k, k ∈ N, such that

n = π1 + · · ·+ πk, 1 ≤ π1 ≤ · · · ≤ πk,

where the nonnegative integers πi are called parts. We denote the number of partitions of
n into k parts by p(n, k), the number of partitions of n into parts less than or equal to k by
P (n, k) and by q(n, k) we denote the number of partitions of n into k distinct parts. We
sometimes write a partition of n into k parts π = (πf1

1 , . . . , πfs
s ), where

∑s
i=1 fi = k, the

value of fi is termed as frequency of the part πi. Let m ∈ N, m ≤ k, we denote cm(n, k)
the number of partitions of n into k parts π = (πf1

1 , . . . , πfs
s ) for which 1 ≤ fi ≤ m and

fj = m for at least one j ∈ {1, . . . , s}. For example c2(12, 4) = 10, the such partitions are
1128, 1137, 1146, 1155, 1227, 1335, 1344, 2235, 2244, 2334. Let δ(n) ≡ n (mod 2), so
δ(n) = 1 or 0, �x� the integer part of x and finally {x} the nearest integer to x.

3 Main results

In this section we give the explicit formulas of RO (n, 4) and RO (n, 4).

Theorem 2 For n ≥ 4,

RO (n, 4) =

{
n3

144
+

n2

48
− nδ(n)

16

}
·
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Proof. First of all, notice that

RO (n, 4) = p(n, 4). (1)

Indeed, each ordered convex quadrilateral ABCD inscribed in Gn can be viewed as a
quadruplet of integers (x, y, z, t), abbreviated for convenience, as a word xyzt, such that:{

n − 4 = x + y + z + t;

0 ≤ x ≤ y ≤ z ≤ t,
(2)

where x, y, z and t represent the number of vertices between A and B, B and C, C and
D and finally between D and A, respectively. It should be noted, that the number of
solutions of System (2) equals p(n, 4), by setting x′ = x + 1, y′ = y + 1, z′ = z + 1 and
t′ = t + 1.

Now, let g(z) be the known generating function of p(n, 4) [3]:

g (z) =
z4

(1 − z) (1 − z2) (1 − z3) (1 − z4)
·

From expanding g(z) in partial fractions, we obtain

g(z) =
1

32 (1 + z)2 − 13

288 (1 − z)2 − 1

24 (1 − z)3 +
1

24 (1 − z)4 +
1 − z2

8 (1 − z4)
− 1 − z

9 (1 − z3)
·

Via straightforward calculations, it can be proved that

g (z) =
∑
n≥0

(
(−1)n (n + 1)

32
− 13 (n + 1)

288
− (n + 1) (n + 2)

48
+

(
1 + 11

6 n + n2 + 1
6n3
)

24
+ ε (n)

)
zn,

where ε (n) ∈ {−17
72 ,−1

8 ,−1
9 ,− 1

72 , 0, 1
72 , 1

9 , 1
8 , 17

72

} ·
Thus, we have

g (z) =
∑
n≥0

(
n3

144
+

n2

48
+

((−1)n − 1) n

32
+ β (n)

)
zn,

where β (n) ∈ {− 5
16 ,−1

4 ,− 29
144 ,− 3

16 ,− 5
36 ,−1

8 ,− 13
144 ,− 11

144 ,− 1
16 ,− 1

36 ,− 1
72 , 0, 5

144 , 7
144 , 1

9 , 23
144 , 2

9 , 7
72

} ·
Since p (n, 4) is an integer and |β (n)| < 1/2, we get

p (n, 4) =
{

n3

144
+

n2

48
+

((−1)n − 1) n

32

}
· (3)

Hence, the result follows.

Remark 3 G.E. Andrews and K. Eriksson said that the method used in the proof above
dates back to Cayley and MacMahon [1, p. 58]. Using the same method [1, p. 60], they
proved the following formula for P (n, 4):

P (n, 4) =

{
(n + 1) (n2 + 23n + 85)

144
− (n + 4)

⌊
n+1

2

⌋
8

}
·
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Because p(n, k) = P (n − k, k) (see for example [4]), it follows:

p (n, 4) =

{
n3

144
+

n2

12
− n

8
− n

⌊
n−1

2

⌋
8

}
· (4)

Note that the formula (3) seems quite simple than (4).

To give an explicit formula for RO (n, 4) we need the following lemma.

Lemma 4 For n ≥ 4,

c2 (n, 4) = p (n, 4) − q (n, 4) −
⌊

n − 1

3

⌋
.

Proof. By definition of cm (n, k) in section 2, it easily follows that

c2 (n, 4) = p (n, 4) − (q (n, 4) + c3 (n, 4) + χ(4/n)) ,

where χ(4/n) = 1 if n ≡ 0 (mod 4), 0 otherwise.

Furthermore, c3(n, 4) can be considered as the number of integer solutions of the equation:

3x + y = n, with 1 ≤ y �= x ≥ 1.

Since x �= y, the solution x = y = n/4, when 4 divides n, must be removed. Then, by
taking y = 1, one can get c3(n, 4) =

⌊
n−1

3

⌋− χ(4|n). This completes the proof.

Now we can derive the following theorem.

Theorem 5 For n ≥ 4,

RO (n, 4) =

{
n3

144
+

n2

48
− nδ(n)

16

}
+

{
(n − 6)3

144
+

(n − 6)2

48
− (n − 6)δ(n)

16

}
−
⌊

n − 1

3

⌋
.

Proof. First of all, notice that q(n, k) = p(n − k(k − 1)/2, k) [1]. Then from (3) we get

q(n, 4) = p(n − 6, 4) =

{
(n − 6)3

144
+

(n − 6)2

48
− (n − 6)δ(n)

16

}
·

Therefore, it is enough to prove that

RO (n, 4) = p (n, 4) + q (n, 4) −
⌊

n − 1

3

⌋
· (5)

In fact, each non-ordered convex quadrilateral may be obtained by permuting exactly two
parts of some partitions of n into four parts, which is associated from System (2) to a
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unique ordered convex quadrilateral. For example, in Figure 1 above, the ordered convex
quadrilateral (b) assimilated to the solution 1133 of 8 or to the partition 2244 of 12,
generates the non-ordered convex quadrilateral (c) via the permutation 1313. Obviously,
not every partition of n can generate a non-ordered convex quadrilateral, those having
three equal parts or four equal parts cannot. Also, each partition of n into four distinct
parts xyzt generates two non-ordered convex quadrilaterals, each one corresponds to one
of the two following permutations xytz and xzyt. On the other hand, each partition of
n into two equal parts, like xxyz, with y and z both of them �= x, generates only one
non-ordered convex quadrilateral, corresponding to the unique permutation xyxz. Thus,

RO (n, 4) = 2q (n, 4) + c2(n, 4), (6)

Hence, from Lemma 4 the theorem holds.

Remark 6 By substituting k = 4 in Theorem 1, we get

R (n, 4) =
1

2

(⌊
n
2

⌋
2

)
+

1

8

(
n − 1

3

)
+

n(1 − δ(n))

16
+ α,

where

α =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

8

−1

8

0

if n ≡ 0 (mod 4),

if n ≡ 2 (mod 4),

otherwise.

Knowing furthermore that

R(n, 4) = RO (n, 4) + RO (n, 4) ,

the following identity takes place according to Theorem 1 and Theorem 5:

1
2
(�n

2 �
2

)
+

1
8
(
n−1

3

)
+

n(1 − δ(n))
16

+ α = 2
{

n3

144
+

n2

48
− nδ(n)

16

}
+

+
{

(n − 6)3

144
+

(n − 6)2

48
− (n − 6)δ(n)

16

}
−

−
⌊

n − 1
3

⌋
.

4 Connecting formula between ∆ (n) and RO(n, 4)

There are two further kinds of quadrilaterals inscribed in Gn, the proper ones, those which
do not use the sides of Gn and the improper ones, those using them. In Figure 2 bellow,
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two quadrilaterals inscribed in G12 are shown, the first one is proper while the second is
not.
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Figure 2

Let denote by RP
O(n, 4) and RP

O(n, 4) respectively, the number of these two kinds of quadri-
laterals. The goal of this section is to prove the following theorem.

Theorem 7 For n ≥ 4,

∆ (n) = RO(n + 1, 4) − RO(n − 3, 4)·

Proof. Note first that an improper ordered quadrilateral is formed by at least one side of
Gn, then the concatenation of the vertices of one of such sides gives a triangle inscribed
in Gn−1, as shown in Figure 3.
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Figure 3

Then we have

RP
O(n, 4) = ∆ (n − 1) ·

On the other hand, it is obvious to see that

RP
O(n, 4) = p(n − 4, 4)·

Then from (1), we get

RP
O(n, 4) = RO(n − 4, 4)·
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Since
RO(n, 4) = RP

O(n, 4) + RP
O(n, 4),

we obtain
RO(n, 4) = RO(n − 4, 4) + ∆ (n − 1) ·

So, the theorem has been proved while substituting n by n + 1.

Remark 8 The well-known recurrence relation [4, p. 373],

p(n, k) = p(n + 1, k + 1) − p(n − k, k + 1), (7)

implies by setting k = 3,

p(n, 3) = p(n + 1, 4) − p(n − 3, 4)· (8)

Thus, as we can see, the formula of Theorem 7 can be considered as a combinatorial
interpretation of identity (8).

For k ≤ n, we have the following generalization, using the same arguments to prove
Theorem 7.

Theorem 9 For n ≥ k,

RO(n, k) = RO(n + 1, k + 1) − RO(n − k, k + 1)·

The formula of Theorem 9 can be considered as a combinatorial interpretation of the
recurrence formula (7).
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