# Ordered and non-ordered non-isometric convex quadrilaterals inscribed in a regular $n$-gon 

Nesrine BENYAHIA TANI ${ }^{1}$, Zahra YAHI ${ }^{2}$, Sadek BOUROUBI ${ }^{3}$

${ }^{1}$ Algiers 3 University, 2 Ahmed Waked Street, Dely Brahim, Algiers, Algeria.<br>${ }^{2}$ Abderahmane Mira University, Bejaia, Algeria.<br>${ }^{3}$ USTHB, Faculty of Mathematics<br>P.B. 32 El-Alia, 16111, Bab Ezzouar, Algiers, Algeria.<br>tani.nesrine@univ-alger3.dz or benyahiatani@yahoo.fr, zahrayahi@yahoo.fr, sbouroubi@usthb.dz or bouroubis@yahoo.fr


#### Abstract

Using several arguments, some authors showed that the number of non-isometric triangles inscribed in a regular $n$-gon equals $\left\{n^{2} / 12\right\}$, where $\{x\}$ is the nearest integer to $x$. In this paper, we take back the same problem, but concerning the number of ordered and non-ordered non-isometric convex quadrilaterals, for which we give simple closed formulas, using Partition Theory. The paper is complemented by a study of two further kinds of quadrilaterals called proper and improper non-isometric convex quadrilaterals, which allows to give a connecting formula between the number of triangles and ordered quadrilaterals, which can be considered as a new combinatorial interpretation of certain identity in Partition Theory.


Keywords: Ordered parallel machines, multipurpose machines, complexity, heuristic, branch and bound.

## 1 Introduction

In the 1938's, Norman Anning from university of Michigan proposed the following problem [6]: "From the vertices of a regular n-gon three are chosen to be the vertices of a triangle. How many essentially different possible triangles are there?". For any given positive integer $n \geq 3$, let $\Delta(n)$ denotes the number of such triangles.

Using a geometric argument, the solution proposed by J.S. Frame, from Brown university, shown that $\Delta(n)=\left\{n^{2} / 12\right\}$, where $\{x\}$ is the nearest integer to $x$. After that, other solutions were proposed by some authors, such as F. C. Auluck, from Dyal Singh college [2].
In 1978 Richard H. Reis, from the Southeastern Massachusetts university posed the following natural general problem: From the vertices of a regular n-gon $k$ are chosen to be the vertices of a $k$-gon. How many incongruent convex $k$-gons are there?
Let us first precise that two $k$-gons are considered congruent if they are coincided at the rotation of one relatively other along the $n$-gon and (or) by reflection of one of the $k$-gons relatively some cord, that what we call non-isometric $k$-gons.
For any given positive integers $2 \leq k \leq n$, let $R(n, k)$ denotes the number of such $k$-gons. In 1979 Hansraj Gupta [5] gave the solution of Reis's problem, using the Möbius inversion formula.

## Theorem 1

$$
R(n, k)=\frac{1}{2}\binom{\left\lfloor\frac{n-h_{k}}{2}\right\rfloor}{\left\lfloor\frac{k}{2}\right\rfloor}+\frac{1}{2 k} \sum_{d / \operatorname{gcd}(n, k)} \varphi(d)\binom{\frac{n}{d}-1}{\frac{k}{d}-1}
$$

where $h_{k} \equiv k(\bmod 2)$ and $\varphi(n)$ the Euler function.

One can find the first values of $R(n, k)$ in the Online Encyclopedia of Integer Sequences (OEIS) [7] as $\underline{\mathrm{A} 004526}$ for $k=2, \underline{\mathrm{~A} 001399}$ for $k=3, \underline{\mathrm{~A} 005232}$ for $k=4$ and $\underline{\mathrm{A} 032279}$ for $k=5$.

The immediate consequence of both Gupta's and Frame's Theorems is the following identity:

$$
\left\{\frac{n^{2}}{12}\right\}=\frac{1}{2}\left\lfloor\frac{n-1}{2}\right\rfloor+\frac{1}{6}\binom{n-1}{2}+\frac{\chi(3 / n)}{3}
$$

where $\chi(3 / n)=1$ if $n \equiv 0(\bmod 3), 0$ otherwise.
In 2004 V.S. Shevelev gave a short proof of Theorem 1, using a bijection between the set of convex polygons with the tops in the $n$-gon splitting points and the set of all $(0,1)$ configurations with the elements in these points [8].

The aim of this paper is to enumerate the number of two kinds of non-isometric convex
quadrilaterals, inscribed in a regular $n$-gon, the ordered ones which have the sequence of their sides's sizes ordered, denoted by $R_{O}(n, 4)$ and those which are non-ordered denoted by $R_{\bar{O}}(n, 4)$, using the Partition Theory. As an example, let us consider the following figure showing three quadrilaterals inscribed in a regular 12-gon, the first is not convex, the second is ordered while the third is not. Observe that the second quadrilateral generates $1+1+3+3$ as partition of 8 in four parts, that is why it is called ordered.


Figure 1

## 2 Notations and preliminaries

We denote by $G_{n}$ a regular $n$-gon and by $\mathbb{N}$ the set of nonnegative integers. The partition of $n \in \mathbb{N}$ into $k$ parts is a tuple $\pi=\left(\pi_{1}, \ldots, \pi_{k}\right) \in \mathbb{N}^{k}, k \in \mathbb{N}$, such that

$$
n=\pi_{1}+\cdots+\pi_{k}, \quad 1 \leq \pi_{1} \leq \cdots \leq \pi_{k}
$$

where the nonnegative integers $\pi_{i}$ are called parts. We denote the number of partitions of $n$ into $k$ parts by $p(n, k)$, the number of partitions of $n$ into parts less than or equal to $k$ by $P(n, k)$ and by $q(n, k)$ we denote the number of partitions of $n$ into $k$ distinct parts. We sometimes write a partition of $n$ into $k$ parts $\pi=\left(\pi_{1}^{f_{1}}, \ldots, \pi_{s}^{f_{s}}\right)$, where $\sum_{i=1}^{s} f_{i}=k$, the value of $f_{i}$ is termed as frequency of the part $\pi_{i}$. Let $m \in \mathbb{N}, m \leq k$, we denote $c_{m}(n, k)$ the number of partitions of $n$ into $k$ parts $\pi=\left(\pi_{1}^{f_{1}}, \ldots, \pi_{s}^{f_{s}}\right)$ for which $1 \leq f_{i} \leq m$ and $f_{j}=m$ for at least one $j \in\{1, \ldots, s\}$. For example $c_{2}(12,4)=10$, the such partitions are $1128,1137,1146,1155,1227,1335,1344,2235,2244,2334$. Let $\delta(n) \equiv n(\bmod 2)$, so $\delta(n)=1$ or $0,\lfloor x\rfloor$ the integer part of $x$ and finally $\{x\}$ the nearest integer to $x$.

## 3 Main results

In this section we give the explicit formulas of $R_{O}(n, 4)$ and $R_{\bar{O}}(n, 4)$.

Theorem 2 For $n \geq 4$,

$$
R_{O}(n, 4)=\left\{\frac{n^{3}}{144}+\frac{n^{2}}{48}-\frac{n \delta(n)}{16}\right\}
$$

Proof. First of all, notice that

$$
\begin{equation*}
R_{O}(n, 4)=p(n, 4) \tag{1}
\end{equation*}
$$

Indeed, each ordered convex quadrilateral $A B C D$ inscribed in $G_{n}$ can be viewed as a quadruplet of integers $(x, y, z, t)$, abbreviated for convenience, as a word $x y z t$, such that:

$$
\left\{\begin{array}{c}
n-4=x+y+z+t  \tag{2}\\
0 \leq x \leq y \leq z \leq t
\end{array}\right.
$$

where $x, y, z$ and $t$ represent the number of vertices between $A$ and $B, B$ and $C, C$ and $D$ and finally between $D$ and $A$, respectively. It should be noted, that the number of solutions of System (2) equals $p(n, 4)$, by setting $x^{\prime}=x+1, y^{\prime}=y+1, z^{\prime}=z+1$ and $t^{\prime}=t+1$.
Now, let $g(z)$ be the known generating function of $p(n, 4)$ [3]:

$$
g(z)=\frac{z^{4}}{(1-z)\left(1-z^{2}\right)\left(1-z^{3}\right)\left(1-z^{4}\right)} .
$$

From expanding $g(z)$ in partial fractions, we obtain

$$
g(z)=\frac{1}{32(1+z)^{2}}-\frac{13}{288(1-z)^{2}}-\frac{1}{24(1-z)^{3}}+\frac{1}{24(1-z)^{4}}+\frac{1-z^{2}}{8\left(1-z^{4}\right)}-\frac{1-z}{9\left(1-z^{3}\right)}
$$

Via straightforward calculations, it can be proved that
$g(z)=\sum_{n \geq 0}\left(\frac{(-1)^{n}(n+1)}{32}-\frac{13(n+1)}{288}-\frac{(n+1)(n+2)}{48}+\frac{\left(1+\frac{11}{6} n+n^{2}+\frac{1}{6} n^{3}\right)}{24}+\epsilon(n)\right) z^{n}$,
where $\epsilon(n) \in\left\{-\frac{17}{72},-\frac{1}{8},-\frac{1}{9},-\frac{1}{72}, 0, \frac{1}{72}, \frac{1}{9}, \frac{1}{8}, \frac{17}{72}\right\}$.
Thus, we have

$$
g(z)=\sum_{n \geq 0}\left(\frac{n^{3}}{144}+\frac{n^{2}}{48}+\frac{\left((-1)^{n}-1\right) n}{32}+\beta(n)\right) z^{n}
$$

where $\beta(n) \in\left\{-\frac{5}{16},-\frac{1}{4},-\frac{29}{144},-\frac{3}{16},-\frac{5}{36},-\frac{1}{8},-\frac{13}{144},-\frac{11}{144},-\frac{1}{16},-\frac{1}{36},-\frac{1}{72}, 0, \frac{5}{144}, \frac{7}{144}, \frac{1}{9}, \frac{23}{144}, \frac{2}{9}, \frac{7}{72}\right\}$.
Since $p(n, 4)$ is an integer and $|\beta(n)|<1 / 2$, we get

$$
\begin{equation*}
p(n, 4)=\left\{\frac{n^{3}}{144}+\frac{n^{2}}{48}+\frac{\left((-1)^{n}-1\right) n}{32}\right\} . \tag{3}
\end{equation*}
$$

Hence, the result follows.

Remark 3 G.E. Andrews and K. Eriksson said that the method used in the proof above dates back to Cayley and MacMahon [1, p. 58]. Using the same method [1, p. 60], they proved the following formula for $P(n, 4)$ :

$$
P(n, 4)=\left\{\frac{(n+1)\left(n^{2}+23 n+85\right)}{144}-\frac{(n+4)\left\lfloor\frac{n+1}{2}\right\rfloor}{8}\right\} .
$$

Because $p(n, k)=P(n-k, k)$ (see for example [4]), it follows:

$$
\begin{equation*}
p(n, 4)=\left\{\frac{n^{3}}{144}+\frac{n^{2}}{12}-\frac{n}{8}-\frac{n\left\lfloor\frac{n-1}{2}\right\rfloor}{8}\right\} . \tag{4}
\end{equation*}
$$

Note that the formula (3) seems quite simple than (4).

To give an explicit formula for $R_{\bar{O}}(n, 4)$ we need the following lemma.

Lemma 4 For $n \geq 4$,

$$
c_{2}(n, 4)=p(n, 4)-q(n, 4)-\left\lfloor\frac{n-1}{3}\right\rfloor .
$$

Proof. By definition of $c_{m}(n, k)$ in section 2 , it easily follows that

$$
c_{2}(n, 4)=p(n, 4)-\left(q(n, 4)+c_{3}(n, 4)+\chi(4 / n)\right),
$$

where $\chi(4 / n)=1$ if $n \equiv 0(\bmod 4), 0$ otherwise.
Furthermore, $c_{3}(n, 4)$ can be considered as the number of integer solutions of the equation:

$$
3 x+y=n, \text { with } 1 \leq y \neq x \geq 1
$$

Since $x \neq y$, the solution $x=y=n / 4$, when 4 divides $n$, must be removed. Then, by taking $y=1$, one can get $c_{3}(n, 4)=\left\lfloor\frac{n-1}{3}\right\rfloor-\chi(4 \mid n)$. This completes the proof.

Now we can derive the following theorem.

Theorem 5 For $n \geq 4$,

$$
R_{\bar{O}}(n, 4)=\left\{\frac{n^{3}}{144}+\frac{n^{2}}{48}-\frac{n \delta(n)}{16}\right\}+\left\{\frac{(n-6)^{3}}{144}+\frac{(n-6)^{2}}{48}-\frac{(n-6) \delta(n)}{16}\right\}-\left\lfloor\frac{n-1}{3}\right\rfloor .
$$

Proof. First of all, notice that $q(n, k)=p(n-k(k-1) / 2, k)[1]$. Then from (3) we get

$$
q(n, 4)=p(n-6,4)=\left\{\frac{(n-6)^{3}}{144}+\frac{(n-6)^{2}}{48}-\frac{(n-6) \delta(n)}{16}\right\} .
$$

Therefore, it is enough to prove that

$$
\begin{equation*}
R_{\bar{O}}(n, 4)=p(n, 4)+q(n, 4)-\left\lfloor\frac{n-1}{3}\right\rfloor . \tag{5}
\end{equation*}
$$

In fact, each non-ordered convex quadrilateral may be obtained by permuting exactly two parts of some partitions of $n$ into four parts, which is associated from System (2) to a
unique ordered convex quadrilateral. For example, in Figure 1 above, the ordered convex quadrilateral (b) assimilated to the solution 1133 of 8 or to the partition 2244 of 12, generates the non-ordered convex quadrilateral (c) via the permutation 1313. Obviously, not every partition of $n$ can generate a non-ordered convex quadrilateral, those having three equal parts or four equal parts cannot. Also, each partition of $n$ into four distinct parts $x y z t$ generates two non-ordered convex quadrilaterals, each one corresponds to one of the two following permutations xytz and xzyt. On the other hand, each partition of $n$ into two equal parts, like $x x y z$, with $y$ and $z$ both of them $\neq x$, generates only one non-ordered convex quadrilateral, corresponding to the unique permutation $x y x z$. Thus,

$$
\begin{equation*}
R_{\bar{O}}(n, 4)=2 q(n, 4)+c_{2}(n, 4) \tag{6}
\end{equation*}
$$

Hence, from Lemma 4 the theorem holds.

Remark 6 By substituting $k=4$ in Theorem 1, we get

$$
R(n, 4)=\frac{1}{2}\binom{\left\lfloor\frac{n}{2}\right\rfloor}{ 2}+\frac{1}{8}\binom{n-1}{3}+\frac{n(1-\delta(n))}{16}+\alpha
$$

where

$$
\alpha=\left\{\begin{aligned}
\frac{1}{8} & \text { if } n \equiv 0(\bmod 4) \\
-\frac{1}{8} & \text { if } n \equiv 2(\bmod 4) \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Knowing furthermore that

$$
R(n, 4)=R_{O}(n, 4)+R_{\bar{O}}(n, 4)
$$

the following identity takes place according to Theorem 1 and Theorem 5:

$$
\left.\begin{array}{rl}
\frac{1}{2}\left(\left\lfloor\frac{n}{2}\right\rfloor\right. \\
2
\end{array}\right)+\frac{1}{8}\binom{n-1}{3}+\frac{n(1-\delta(n))}{16}+\alpha=-2\left\{\frac{n^{3}}{144}+\frac{n^{2}}{48}-\frac{n \delta(n)}{16}\right\}+,
$$

## 4 Connecting formula between $\Delta(n)$ and $R_{O}(n, 4)$

There are two further kinds of quadrilaterals inscribed in $G_{n}$, the proper ones, those which do not use the sides of $G_{n}$ and the improper ones, those using them. In Figure 2 bellow,
two quadrilaterals inscribed in $G_{12}$ are shown, the first one is proper while the second is not.


Figure 2

Let denote by $R_{O}^{P}(n, 4)$ and $R_{O}^{\bar{P}}(n, 4)$ respectively, the number of these two kinds of quadrilaterals. The goal of this section is to prove the following theorem.

Theorem 7 For $n \geq 4$,

$$
\Delta(n)=R_{O}(n+1,4)-R_{O}(n-3,4)
$$

Proof. Note first that an improper ordered quadrilateral is formed by at least one side of $G_{n}$, then the concatenation of the vertices of one of such sides gives a triangle inscribed in $G_{n-1}$, as shown in Figure 3.


Figure 3

Then we have

$$
R_{O}^{\bar{P}}(n, 4)=\Delta(n-1)
$$

On the other hand, it is obvious to see that

$$
R_{O}^{P}(n, 4)=p(n-4,4) .
$$

Then from (1), we get

$$
R_{O}^{P}(n, 4)=R_{O}(n-4,4) .
$$

Since

$$
R_{O}(n, 4)=R_{O}^{P}(n, 4)+R_{O}^{\bar{P}}(n, 4)
$$

we obtain

$$
R_{O}(n, 4)=R_{O}(n-4,4)+\Delta(n-1)
$$

So, the theorem has been proved while substituting $n$ by $n+1$.

Remark 8 The well-known recurrence relation [4, p. 373],

$$
\begin{equation*}
p(n, k)=p(n+1, k+1)-p(n-k, k+1) \tag{7}
\end{equation*}
$$

implies by setting $k=3$,

$$
\begin{equation*}
p(n, 3)=p(n+1,4)-p(n-3,4) . \tag{8}
\end{equation*}
$$

Thus, as we can see, the formula of Theorem 7 can be considered as a combinatorial interpretation of identity (8).

For $k \leq n$, we have the following generalization, using the same arguments to prove Theorem 7.

Theorem 9 For $n \geq k$,

$$
R_{O}(n, k)=R_{O}(n+1, k+1)-R_{O}(n-k, k+1)
$$

The formula of Theorem 9 can be considered as a combinatorial interpretation of the recurrence formula (7).

## References

[1] G. E. Andrews and K. Eriksson, 'Integer Partitions', Cambridge University Press, Cambridge, United Kingdom, (2004).
[2] N. Anning, J. S. Frame and F. C. Auluck, 'Problems for Solution: 3874-3899', The American Mathematical Monthly, Vol. 47, No. 9, (Nov., 1940), 664-666.
[3] A. Charalambos Charalambides, 'Enumerative Combinatorics', Chapman \& Hall /CRC, (2002).
[4] L. Comtet, 'Advanced Combinatorics', D. Reidel Publishing Company, DordrechtHolland, Boston, 1974, 133-175.
[5] H. Gupta, Enumeration of incongruent cyclic k-gons, Indian J. Pure Appl. Math., 10 (1979), no. 8, 964-999.
[6] J. R. Musselman, G. Rutledge, N. Anning, W. Leighton, V. Thebault, 'Problems for Solution: 3891-3895', The American Mathematical Monthly, Vol. 45, No. 9 (Nov., 1938), 631-632.
[7] OEIS, The online Encyclopedia of Integer sequences, Published electronically at http://www.research.att.com/ ${ }^{n}$ njas/sequences, 2008.
[8] V.S. Shevelev, Necklaces and convex k-gons,Indian J.Pure Appl.Math., 35,no.5,(2004), 629-638.

