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Abstract: Confidentiality was and will always remain a critical need in the ex-
changes either between persons or the official parties. Recently, cryptology has
made a jump, from classical form to the quantum one, we talk about quantum
cryptography. This theory, although is perfectly safe, there are still binding
limits of implementation. In this paper, we developed a new cryptographic
protocol, called BCB12 protocol, which will be used to provide random keys
shared via a classical channel, using the set partitions. Each key can be long
enough that the plain text in question, in purpose, for instance, to hide then
to transmit the secret information using the Vernam cipher.
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1 Introduction

Issues such as confidentiality and integrity of information have been solved by cryptog-
raphy. The certificate that the Vernam cipher is unconditionally secure, has transformed
the problem to ensure the confidentiality of information to a problem of distribution of
the secret key used in the encryption process between two parties. Until the eighties,
one way to distribute the secret key, apart from hand to hand, was to use algorithms
whose security is based on the computational complexity. The keys generated by such
algorithms are reasonably secret but not unconditionally secret.

In the early seventies, Stephen Wiesner wrote conjugate coding [3], describing the basis
for a new concept that will be known to the world in the early eighty by quantum cryptog-
raphy. Cryptography was attached to a quantum concept by the fact it relies on photons
to transmit secret information instead of bits. Security is guaranteed not by mathematical
theorems, but by the fundamental laws of physics as the Heisenberg uncertainty principle
which asserts that certain quantities cannot be measured simultaneously.

Charles H. Bennett (who knew about Wiesner’s idea) and Gilles Brassard took the subject
in 1984 [4], where they show up to the world the first protocol of quantum key distri-
bution whose security is unconditional because confidentiality is based on impossibilities
imposed by the laws of physics [5]. This protocol was implemented in 1989 over a distance
of 32 cm by calling efforts of F. Bessette, L. Salvail and J. Smolin, a full description of
the prototype was published two years later [6].

All Quantum Key Distribution protocols consist of two phases [7]:

1. Initially one of the two parties sends to the other party ”quantum” signals then
perform certain measurements.

2. In a second time the two parties engage in classical treatment of measurement
results.

2 Concept of unconditional security - Vernam Cipher

The Vernam cryptosystem, also known as the disposable mask or The One Time Pad
Cipher, provides perfect security, despite its simplicity. In its classic form, it is nothing
but a very long random sequence of letters, written on pages bound together to form a
block. The sender uses each letter of the mask in turn to encrypt exactly one plain text
character. The Vernam Cipher text C is a function of both the message M and the key
K.

The Vernam cipher was invented in 1917 by an engineer of AT & T , Gilbert S. Vernam
[9], who thought it would become widely used for automatic encryption and decryption of
telegraph messages. The vernam cipher is a polyalphabetic substitution cipher belongs to
secret key cryptosystems. The principle of the encryption algorithm is that if a random
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key is added to a message, the bits of the resulting string are also random and bear no
information about the message. If we use binary logic, unlike Vernam who worked with
an alphabet of 26 letters, the encryption algorithm E can be written as:

EK(M) = (M1 ⊕ k1,M2 ⊕ k2, . . . , Mn ⊕ kn) mod 2,

where M = (M1,M2, . . . , Mn) is the message to encrypt, and K = (k1, k2, . . . , kn) is the
key consisting of random bits. The message and the key are added bitwise modulo 2, i.e.,
the exclusive-OR. Decryption process D of cipher text C is the same as encryption, it is
given by:

M = DK(C) = (C1 ⊕ k1, C2 ⊕ k2, . . . , Cn ⊕ kn) mod 2.

Perfect security is ensured via the concept of entropy introduced by Shannon in 1949 [1].
Later, Vernam has been used in almost all military concerns. Vernam fits very well to the
definition of a secret system [2], a fact confirmed by the following theorem [8]:

Theorem 1 The Vernam cipher is unconditionally secure for any distribution of plain
text.

But just like any other cryptosystem, it has significant drawbacks which can cause its
vulnerability such as the key must be as long as the message to encrypt; the cryptosystem
becomes vulnerable if the same key is used more than once and the safest way to transport
the key is the diplomatic bag which requires users from the diplomatic sector once.

To remedy major drawbacks of this cipher, we propose here a new protocol, called BCB12
”Bouroubi Charchali Benyahia 2012”, which is based on the set partitions concept.

3 BCB12 Protocol

The protocol BCB12 inspired from the quantum protocol BB84 ”Bennett Brassard 1984”
is based on the set partitioning problem which is NP-hard. The expected objective from
the protocol is to product and to distribute a secret key via a classical channel, that will
be used to ensure confidential communications between the participants by interchanging
messages encrypted by the Vernam cipher.

First, the two parties involved in the protocol must share π = {A1, A2, . . . , Ak}, a partition
of a set [n] = {1, 2, . . . , n} into k-disjoint blocks (n is assumed to be large enough).
Traditional protagonists who must run an exchange of information in cryptography are
Alice and Bob. Both are involved in the sending and receiving secret messages and of
course Eve, the intruder who wants to spy on Alice and Bob.

Suppose Alice wants to send a message M to Bob, so steps to follow are:
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1. Alice calculates the number of characters LM of the message M to be encrypted.

2. Alice fixes the parameter m such that m = LM × S, where S is a positive integer
called amplification parameter, which we explain the role later.

3. Alice generates randomly a sequence of integers between 1 and n of size m, and for
each integer in the sequence, she sets in a list TA the index of the block to which
this element belongs in the partition π.

4. Alice sends the parameter m to Bob.

5. Bob in turn generates a random sequence of integers between 1 and n of size m,
and for each integer in the sequence, he sets in a list TB the index of the block to
which this element belongs in the partition π.

6. Bob sends the list TB to Alice.

7. Alice receives Bob’s list, and compares it with hers. If there is correspondence, i.e,
for the same index, she locates the same block in both lists, she puts a ” + ”, if not,
she puts a ”− ”. Doing so, she creates a new list, said T , whose elements are ” + ”
and ”− ”, then we have:

T (i) =





+, if TA(i) = TB(i),

−, if TA(i) 6= TB(i).
, ∀i = 1, ..., m.

8. Alice interprets each ” + ” as the result of a function f (defined below) chosen from
three functions (for example), acting on the elements of the corresponding block.
The concatenation of these results provides the random secret key of length LC .

To identify f , Alice takes the first ” + ” in the list T , writes in binary the block
index corresponding to this ” + ”, let be j, then she considers the two first bit to
the right.

If the bits are:

i) identical (”00” or ”11”) then the function f is interpreted as the sum of elements
of the block Aj.

ii) ”10” then the function f is interpreted as the product of the elements of the
block Aj.

iii) ”01” in this case, the function f is interpreted as the maximum element of the
block Aj.

9. Alice compares LM to LC . If LM ≤ LC , she sends the encrypted message and the
sequence T to Bob, and then, Bob performs step 8 to get the same key. Otherwise,
Alice must return to step 2 and, at this level, she can keep the size m or modify it.

Note that the generated keys by the protocol have been proved random, using statistical
tests.
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Absolute confidentiality requires a sharing of the key parameter π. The parameter π
ensures that the resulting key is secret and is not known, only by legitimate users of the
protocol. Therefore, the generated key by BCB12 offers the privacy of information trans-
mitted, encrypted according to the Vernam cryptosystem, ensuring inability to decrypt
what was encrypted by a spy.

4 Illustrative example

In this section, we present an illustrative and didactic example to show how BCB12
protocol runs, in order to get random secret keys, which will be used for the plain texts
ciphering. The first step, consists to generate a random partition of a set [n] into k-blocks
(for any n and k to choose). The second consists of unrolling the BCB12 protocol then
inject the provided key in Vernam, the adopted cryptosystem, to get out finally with the
enciphered text.

Suppose now, Alice wants to send an encrypted message to Bob. We consider first the
following shared parameters between them: n = 20, k = 13 and the partition π = {{1}; {5};
{14}; {3}; {10}; {2}; {6, 8, 12}; {13, 18}; {20}; {9, 11}; {15, 16, 19}; {7}; {4, 17}}.

Let be ”it rains take the umbrella” the secret message. The message written in binary
form is:
01001001011101000010000001110010011000010110100101101110011100110010000001110100011000010110101101100101001000

000111010001101000011001010010000001110101011011010110001001110010011001010110110001101100110000100101110,

with length LM = 216. Alice sets the parameter S at 2, it follows that m = 216∗2 = 432.

Alice generates her random sequence:

{12, 1, 4, 8, 10, 13, 16, 18, 18, 11, 13, 16, 15, 7, 4, 16, 8, 1, 13, 5, 17, 10, 2, 14, 7, 19, 11, 3, 16, 8, 1, 13, 6, 18, 10, 2, 15, 7,

11, 3, 15, 8, 20, 12, 4, 17, 9, 1, 14, 6, 18, 11, 3, 15, 6, 19, 11, 3, 16, 8, 4, 16, 9, 1, 13, 6, 18, 10, 2, 15, 7, 19, 2, 5, 17, 9, 2, 14,

6, 18, 12, 3, 16, 9, 20, 13, 5, 17, 9, 2, 14, 6, 19, 11, 3, 15, 7, 19, 12, 4, 16, 8, 19, 11, 4, 17, 9, 2, 14, 6, 18, 11, 3, 16, 8, 1, 13, 5,

17, 9, 2, 14, 6, 17, 9, 1, 13, 8, 20, 12, 4, 16, 8, 20, 12, 5, 17, 9, 1, 13, 5, 16, 8, 1, 13, 5, 17, 9, 2, 14, 6, 18, 10, 3, 15, 7, 18, 10,

2, 14, 7, 19, 11, 3, 15, 7, 19, 11, 3, 14, 6, 18, 9, 1, 13, 17, 11, 3, 2, 15, 8, 20, 16, 8, 20, 13, 5,17, 9, 2, 13, 6, 19, 12, 4, 16, 9,

1, 13, 6, 18, 13, 5, 17, 10, 2, 14, 6, 19, 11, 4, 16, 8, 1, 13, 5, 18, 10, 2, 15, 11, 3, 15, 8, 1, 13, 5, 18, 10, 2, 15, 7, 20, 12, 5, 17,

9, 2, 14, 7, 19, 12, 4, 16, 9, 1, 13, 6, 3, 15, 7, 20, 12, 4, 17, 9, 1, 16, 8, 20, 12, 5, 17, 9, 2, 14, 7, 19, 11, 4, 16, 9, 1, 14, 7, 19,

11, 3, 16, 7, 20, 12, 4, 16, 9, 2, 14, 7, 19, 12, 4, 16, 9, 1, 14, 10, 3, 15, 7, 20, 12, 4, 17, 9, 3, 16, 8, 20, 13, 5, 17, 9, 2, 14, 6,

18, 11, 3, 16, 8, 1, 14, 6, 19, 11, 4, 16, 8, 1, 13, 5, 18, 10, 2, 15, 7, 20, 12, 4, 17, 9, 2, 18, 10, 3, 15, 7, 20, 12, 4, 17, 11, 4, 16,

9, 1, 14, 6, 18, 10, 3, 15, 7, 20, 13, 5, 17, 10, 3, 15, 12, 4, 17, 9, 2, 14, 6, 19, 11, 3, 16, 8, 20, 13, 5, 18, 10, 2, 14, 7, 19, 11, 4,

16, 8, 20, 13, 5, 18, 11, 3, 16, 8, 20, 13, 5, 17, 9, 2, 14, 6, 18, 11, 3, 14, 8, 20, 12, 5, 17, 9, 1, 14, 6, 19, 11, 3, 18, 10, 2, 14}.

For each integer in the sequence, she sets in a list TA the block index to which this element
belongs in the partition π.

TA = {7, 1, 13, 7, 5, 8, 1, 7, 10, 8, 11, 11, 12, 13, 11, 7, 1, 8, 2, 13, 5, 6, 3, 12, 11, 10, 4, 11, 7, 1, 8, 7, 8, 5, 6, 11, 12, 10,

4, 11, 7, 9, 7, 13, 13, 10, 1, 3, 7, 8, 10, 4, 11, 7, 11, 10, 4, 11, 7, 13, 11, 10, 1, 8, 7, 8, 5, 6, 11, 12, 11, 7, 2, 13, 10, 6, 3, 7, 8,

7, 4, 11, 10, 9, 8, 2, 13, 10, 6, 3, 7, 11, 10, 4, 11, 12, 11, 7, 13, 11, 7, 11, 10, 13, 13, 10, 6, 3, 7, 8, 10, 4, 11, 7, 1, 8, 2, 13, 10,

6, 7, 13, 10, 1, 8, 7, 9, 7, 13, 11, 7, 9, 7, 2, 13, 10, 1, 8, 2, 11, 7, 1, 8, 2, 13, 10, 6, 3, 7, 8, 5, 4, 11, 12, 8, 5, 6, 3, 12, 11, 10,

4, 11, 12, 11, 10, 4, 3, 7, 8, 10, 1, 8, 13, 10, 4, 6, 11, 7, 9, 11, 7, 9, 8, 2, 13, 10, 6, 8, 7, 11, 7, 13, 11, 10, 1, 8, 7, 8, 8, 2, 13,
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5, 6, 3, 7, 11, 10, 13, 11, 7, 1, 8, 2, 8, 5, 6, 11, 10, 4, 11, 7, 1, 8, 2, 8, 5, 6, 11, 12, 9, 7, 2, 13, 10, 6, 3, 12, 11, 7, 13, 11, 10,

1, 8, 7, 7, 11, 12, 9, 7, 13 , 13, 10, 1, 11, 7, 9, 7, 2, 13, 10, 6, 3, 12, 11, 10, 13, 11, 10, 1, 3, 12, 11, 10, 4, 11, 12, 9, 7, 13, 11,

10, 6, 3, 12, 11, 7, 13, 11, 10, 1, 3, 5, 4, 11, 12, 9, 9, 13, 13, 10, 4, 11, 7, 9, 8, 2, 13, 10, 6, 3, 7, 8, 10, 4, 11, 7, 7, 1, 3, 7, 11,

10, 13, 11, 7, 1, 8, 2, 8, 5, 6, 11, 12, 9, 7, 13, 13, 10, 6, 8, 5, 4, 11, 12, 9, 7, 13, 13, 10, 13, 11, 10, 1, 3, 7, 8, 5, 4, 11, 12, 9,

8, 2, 13, 5, 4, 11, 7, 13, 13, 10, 6, 3, 7, 11, 10, 7, 11, 7, 9, 8, 2, 8, 5, 6, 3, 12, 11, 10, 13, 11, 7, 9, 8, 2, 8, 10, 4, 11, 7, 9, 8, 2,

13, 10, 6, 3, 7, 8, 10, 4, 3, 7, 9, 7, 2, 13, 10, 1, 3, 7, 11, 10, 4, 8, 5, 6, 3}.

Alice sends m to Bob. Bob in turn generates his random sequence of length m:

{6, 15, 20, 3, 6, 11, 13, 16, 18, 20, 8, 10, 14, 12, 3, 16, 8, 20, 11, 4, 15, 7, 19, 11, 3, 15, 6, 18, 10, 2, 14, 5, 17, 9, 1, 13, 4, 16,

8, 20, 12, 3, 15, 7, 19, 11, 2, 15, 7, 19, 11, 3, 15, 7, 18, 11, 4, 15, 8, 20, 13, 4, 16, 2, 14, 6, 19, 11, 3, 16, 8, 20, 12, 4, 17, 8,

20, 14, 9, 1, 13, 4, 17, 10, 2, 15, 7, 19, 11, 4, 16, 8, 1, 13, 5, 17, 10, 2, 14, 7, 19, 11, 3, 16, 6, 4, 17, 9, 1, 13, 6, 18, 10, 3, 15,

8, 1, 12, 5, 18, 10, 3, 15, 7, 20, 12, 4, 16, 9, 1, 13, 5, 18, 10, 2, 15, 7, 20, 12, 5, 17, 9, 2, 14, 6, 19, 11, 5, 17, 10, 3, 15, 7, 20,

12, 5, 17, 10, 1, 14, 7, 18, 11, 4, 19, 11, 4, 17, 3, 13, 7, 20, 12, 5, 18, 11, 3, 16, 9, 6, 18, 12, 19, 14, 7, 20, 13, 5, 8, 20, 13, 5,

17, 10, 2, 14, 6, 18, 11, 3, 15, 8, 20, 12, 4, 16, 8, 1, 13, 5, 18, 10, 3, 15, 7, 19, 12, 5, 17, 9, 1, 13, 6, 18, 10, 3, 15, 8, 20, 12, 4,

17, 9, 1, 14, 6, 18, 11, 3, 15, 7, 20, 12, 5, 17, 9, 1, 13, 5, 18, 9, 2, 14, 6, 18, 11, 2, 14, 6, 19, 11,3, 16, 8, 20, 12, 4, 17, 9, 1,

13, 5, 17, 10, 2, 15, 7, 19, 10, 3, 14, 7, 19, 11, 3, 15, 7, 20, 12, 4, 16, 9, 1, 13, 5, 17, 9, 1, 13, 5, 17, 9, 1, 13, 6, 17, 10, 2, 14,

6, 18, 11, 3, 15, 7, 20, 12, 4, 16, 8, 20, 13, 6, 18, 10, 3, 15, 7, 19, 11, 3, 15, 8, 19, 12, 4, 17, 10, 2, 15, 7, 19, 11, 3, 15, 7, 20,

11, 4, 17, 8, 1, 13, 5, 17, 9, 2, 14, 6, 18, 10, 2, 15, 7, 19, 10, 2, 14, 6, 19, 11, 3, 16, 8, 20, 12, 4, 16, 8, 1, 12, 4, 17, 10, 1, 15,

7, 18, 11, 3, 15, 7, 20, 12, 4, 16, 8, 20, 13, 5, 17, 9, 1, 13, 6, 17, 9, 1, 13, 5, 18, 10, 3, 15, 7, 19, 11, 3, 14, 7, 19, 12, 4, 17, 8,

1, 13, 5, 17, 10, 2, 14}.

For each integer in the sequence, Bob sets in a list TB the block index to which this
element belongs in the partition π:

TB = {7, 11, 9, 4, 7, 10, 8, 11, 8, 9, 7, 5, 3, 7, 4, 11, 7, 9, 10, 13, 11, 12, 11, 10, 4, 11, 7, 8, 5, 6, 3, 2, 13, 10, 1, 8, 13, 11,

7, 9, 7, 4, 11, 12, 11, 10, 6, 11, 12, 11, 10, 4, 11, 12, 8, 10, 13, 11, 7, 9, 8, 13, 11, 6, 3, 7, 11, 10, 4, 11, 7, 9, 7, 13, 13, 7, 9, 3,

10, 1, 8, 13, 13, 5, 6, 11, 12, 11, 10, 13, 11, 7, 1, 8, 2, 13, 5, 6, 3, 12, 11, 10, 4, 11, 7, 13, 13, 10, 1, 8, 7, 8, 5, 4, 11, 7, 1, 7,

2, 8, 5, 4, 11, 12, 9, 7, 13, 11, 10, 18, 2, 8, 5, 6, 11, 12, 9, 7, 2, 13, 10, 6, 3, 7, 11, 10, 2, 13, 5, 4, 11, 12, 9, 7, 2, 13, 5, 1, 3,

12, 8, 10, 13, 11, 10, 13, 13, 4, 8, 12, 9, 7, 2, 8, 10, 4, 11, 10, 7, 8, 7, 11, 3, 12, 9, 8, 2, 7, 9, 8, 2, 13, 5, 6, 3, 7, 8, 10, 4, 11,

7, 9, 7, 13, 11, 7, 1, 8, 2, 8, 5, 4, 11, 12, 11, 7, 2, 13, 10, 1, 8, 7, 8, 5, 4, 11, 7, 9, 7, 13, 13, 10, 1, 3, 7, 8, 10, 4, 11, 12, 9, 7,

2, 13, 10, 1, 8, 2, 8, 10, 6, 3, 7, 8, 10, 6, 3, 7, 11, 10, 4, 11, 7, 9, 7, 13, 13, 10, 1, 8, 2, 13, 5, 6, 11, 12, 11, 5, 4, 3, 12, 11, 10,

4, 11, 12, 9, 7, 13, 11, 10, 1, 8, 2, 13, 10, 1, 8, 2, 13, 10, 1, 8, 7, 13, 5, 6, 3, 7, 8, 10, 4, 11, 12, 9, 7, 13, 11, 7, 9, 8, 7, 8, 5, 4,

11, 12, 11, 10, 4, 11, 7, 11, 7, 13, 13, 5, 6, 11, 12, 11, 10, 4, 11, 12, 9, 10, 13, 13, 7, 1, 8, 2, 13, 10, 6, 3, 7, 8, 5, 6, 11, 12, 11,

5, 6, 3, 7, 11, 10, 4, 11, 7, 9, 7, 13, 11, 7, 1, 7, 13, 13, 5, 1, 11, 12, 8, 10, 4, 11, 12, 9, 7, 13, 11, 7, 9, 8, 2, 13, 10, 1, 8, 7, 13,

10, 1, 8, 2, 8, 5, 4, 11, 12, 11, 10, 4, 3, 12, 11, 7, 13, 13, 7, 1, 8, 2, 13, 5, 6, 3}.

The first integer obtained by Alice is 12 which belongs to the block A7, where the second
one is 1 which belongs to the block A1. While, the first integer obtained by Bob is 6
belongs to the block A7, and the second is 15 belongs to the block A11, and so on. Since
we have the same index for the first integer in both sequences, Alice obtains the first ”+”.
By comparing the second integer obtained in both sequences, we can see that we have not
the same index, so Alice put a ” − ” in the second position. Doing so, Alice establishes
the list T :

T = {+, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, +, -, -, -, -, -, -, -, -, -, -, - , -, -, -,

-, -, -, -, -, -, -, -, -, +, +, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, +, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, +, -, +, +,

+, -, -, +, +, -, +, +, +, +, -, +, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -,

-, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, +, -, -, -, +, +, +, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, +, -, -, -, -, -, -, -, -, -, -, -,

-, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, +, -, -, +, -, +, -, -, +, +, +, -, -, -, -, -, +, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -,
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-, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -,

-, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, +, -, +, +, +, +, -, +, +, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -,-, -,

-, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, -, +, -, -, -, -, +, +, +}.

As the first ” + ” refers to the block A7 and 7 = 00000111 in binary form, with the two
first bit to the right are 11, then the function f will be the sum of elements of blocks,
hence:

f(A7) = 6 + 8 + 12 = 26.

Therefore the provided key is:

{26, 50, 21, 50, 31, 50, 21, 21, 20, 26, 31, 3, 50, 26, 1, 5, 26, 20, 31, 5, 21, 20,7, 26, 20, 1,31, 26, 20, 14, 26, 31, 10, 50, 7, 26,

10, 2, 14}.

Here the key is written in binary form, with length LC = 312:

000110100011001000010101001100100001111100110010000101010001010100010100000110100001111100 00001100110010000110

100000000100000101000110100001010000011111000001010001010100010100000001110001101000010100 000000010001111100011

0100001010000001110000110100001111100001010001100100000011100011010000010100000001000001110.

Since LC > LM , Alice has to encrypt the message. She gets the following encrypted text:

010100110100011000110101010000000111111001011011011110110110011000110100011011100111111001101000 01010111001110

1001110101011011010111111100110100011010100110100001110111011001100110001001110110011110000110000000110001.

Then, she sends the list T and the enciphered message to Bob.

Using the list T , Bob gets the key, therefore, he obtains the plain text by performing the
Xor operation (operating principle of Vernam) between the enciphered message and the
key.

5 Conclusion

Quantum cryptography ensures that the secret key is shared in confidential way and an
unauthorized party has not copy, the Vernam Cipher, under restriction of eliminating its
major drawbacks mentioned above, offers unconditional security of the encrypted mes-
sage with assurance that without the possession the encryption key, it is impossible to
decipher what has been encrypted. The BCB12 protocol, carries out two objectives:
The first objective being the production of a random key at least as long as the message
to be encrypted with assurance of the synchronization between the transmitter and the
receiver. So, the constraint mentioned above will be removed. The second is the inability
of a third person, said Eve, to determine the secret key generated in a reasonable time.
This is because if Eve intercepts all data exchanged between Alice and Bob, she has no
information on the partition π and the secret key. To determine π in order to find the key,
Eve is opposite to the following problem: Find all the k-blocks of a set in the following
form [k + i] = {1, 2, . . . , k + i} i = 1, 2, ..., for each obtained partition, unroll the protocol
in order to generate all possible random keys and then, lead a exhaustive key search, to
find the right key, which is not feasible in a reasonable time, at least during the lifetime
of the shared secret between Alice and Bob.
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