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Abstract: In this paper we consider the number of partitions of a positive
integer n into parts of a specified number of distinct sizes. We give a method
for constructing all partitions of n into parts of two sizes, as well as an explicit
formula to count them with a new self-contained proof. As a side effect, by
using the möbius function we also give a formula for the number of partitions
of n into coprime parts.
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1 Introduction

A partition of a positive integer n is a sequence of non increasing positive integers
n1 (a1 times), n2 (a2 times), . . ., ns (as times), with ni > ni+1, that sum to n. We
sometimes write the such partition π = (na1

1 na2
2 · · · nas

s ), each ni is called part of the
partition π and ai its frequency. The partition function p(n) counts the partitions of n.
If we ignore some unpublished work of G.W.V. Leibniz, the theory of integer partitions
can find its origin in the work of L. Euler [6]. In fact, he made a sustained study of par-
titions and partition identities, and exploited them to establish a huge number of results
in Analysis in 1748. An excellent introduction to this subject can be found in the book
of G. E. Andrews [2].

Definition 1 Let π = (na1
1 na2

2 · · · nas
s ) be a partition of n. We say that π is a partition

into k parts with s distinct sizes if





n = a1 n1 + · · ·+ as ns;

n1 > n2 > · · · > ns ≥ 1;

a1 + · · ·+ as = k;

a1, . . . , as ≥ 1.

(1)

Let t(n, k, s) be the number of solutions of system (1) and t(n, s) the total number of
partitions of n into s distinct sizes. Then we have

t(n, s) =

2n−s(s−1)
2∑

k=s

t(n, k, s). (2)

Example 1 Among 27 partitions of n = 11 into 2 distinct sizes, the partitions (71 14),
(42 13), (31 24) and (33 12) are the only ones which are into 5 parts.

This kind of partitions appeared for the first time in the work of P. A. MacMahon [7].
Next, E. Deutsch presented the number of partitions of n into exactly two odd sizes of
parts and the number of partitions of n into exactly two sizes of parts, one odd and one
even. One can find these values in the Online Encyclopedia of Integer Sequences (OEIS)
[8] as A117955 for the first number, A117956 for the second one and A002133 for the
number of partitions of n using only 2 types of parts. In the work of Benyahia-Tani
and Bouroubi [3], we can find proof of effective and non-effective finiteness theorems on
t(n, k, s). We can cite for example the following results:
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Theorem 1 For k ≥ s ≥ 2, n ≥ k + s(s−1)
2

and n ≥ max{k, s(s+1)
2
}, we have

t(n, k, s) =

b 2n−s(s−1)
2k

c∑
i=1

k−s+1∑
j=1

t(n− ki, k − j, s− 1), (3)

t(n, k, 2) =

bn−1
k
c∑

i=1

τk−1↓(n− ki), (4)

where τd↓(k) denotes the number of positive divisors of k less than or equal to d.

2 Main Results

One of the aim of this paper is to give an explicit formula for t(n, k, 2) using an effective
new approach.

Thus, let consider the system:





n = a1 n1 + a2 n2;

a1 + a2 = k;

n1 > n2 ≥ 1;

a1, a2 ≥ 1.

(5)

and let m = n1 − n2 throughout the remainder of the paper.

First of all, we introduce the following lemma to prepare the main theorem.

Lemma 2 System (5) has integral solutions if and only if the following conditions are
satisfied:

(i) n ≡ n2k(mod m),

(ii) max
(
1,

⌈
n
k

⌉−m + χ(k|n)
) ≤ n2 ≤

⌊
n
k

⌋− χ(k|n),

where χ(k|n) = 1 if k divides n, and 0 otherwise.

Proof. From system (5), we have

(
n1 n2

1 1

)(
a1

a2

)
=

(
n

k

)
·
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Since m > 0, we can write
(

a1

a2

)
=

1

m

(
n− n2k

−n + n1k

)
·

Then, system (5) has integral solutions if and only if m divides n− n2k, n− n2k > 0 and
−n + n1k > 0. That is,

n ≡ n2k(mod m) and
n

k
−m < n2 <

n

k
·

Since k can divide n, and n2 ≥ 1, the result holds.

From this lemma, we can now derive the following theorem.

Theorem 3 For k ≥ 2, n ≥ max{k, 3}, d = gcd(n, k) and e|d, let Ie be the set of pairs
(α, β) ∈ N2, such that:

• 1 ≤ α ≤ ⌊
n−k

e

⌋
and gcd

(
α, k

e

)
= 1,

• β ≡ (
n
e

) (
k
e

)−1
(mod α) and 0 ≤ β ≤ min

(
α− 1,

⌊
n
k

⌋− χ(k|n)
)
.

Then

t(n, k, 2) =
∑

e|d

∑

(α,β)∈Ie

(⌊⌊
n
k

⌋− χ(k|n)− β

α

⌋
−

⌈
max

(
1,

⌈
n
k

⌉
+ χ(k|n)− αe

)− β

α

⌉
+ 1

)
.

Proof. Put e = gcd(m, k) and let α = m
e
, that is 1 ≤ α ≤ ⌊

n−k
e

⌋
and gcd

(
α, k

e

)
= 1. By

Lemma 2, case (i), we can see that e divides d, and n2 ≡
(

n
e

) (
k
e

)−1
(mod α).

Let 0 ≤ β < α, such that β ≡ (
n
e

) (
k
e

)−1
(mod α). Then

n2 = β + tα, t ∈ Z.

Since 0 ≤ β < α and β ≤ n2 > 0, then t ∈ N and 0 ≤ β ≤ min
(
α− 1,

⌊n

k

⌋
− χ(k|n)

)
.

It follows from Lemma 2, case (ii), that

max
(
1,

⌈n

k

⌉
+ χ(k|n)−m

)
≤ β + tα ≤

⌊n

k

⌋
− χ(k|n)·

Finally, t(n, k, 2) equals the number of positive integers t, such that
⌈

max
(
1,

⌈
n
k

⌉
+ χ(k|n)−m

)− β

α

⌉
≤ t ≤

⌊⌊
n
k

⌋− χ(k|n)− β

α

⌋
·

This completes the proof.
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Remark 4 One nice application of Theorem 3 concerns the following algorithm which
allows us to generate all partitions of n using exactly two distinct sizes of parts.

Algorithm 1 Partitions into k parts with exactly two distinct sizes of parts

Require: k ≥ 2, n ≥ max{k, 3}
Ensure: Set of quadruple (n1, a1, n2, a2),

d ← gcd(n, k)
for each divisor e of d do

for α from 1 to
⌊

n−k
e

⌋
do

if gcd
(
α, k

e

)
= 1 then

β ← (
n
e

) (
k
e

)−1
(mod α)

if β ≤ min
(
α− 1,

⌊
n
k

⌋− χ(k|n)
)

then

t1 ←
⌈

max(1,dn
ke+χ(k|n)−αe)−β

α

⌉

t2 ←
⌊
bn

kc−χ(k|n)−β

α

⌋

for t from t1 to t2 do

n2 ← β + tα

n1 ← αe + n2

a2 ←
⌊

n−n1k
n2−n1

⌋

a1 ← k − a2

end for

end if

end if

end for
end for

This algorithm runs in O(n).

Example 2 Let n = 11 and k = 8, then d = gcd(11, 8) = 1. So, e = 1 is the only one
divisor of d. The values of α that satisfies 1 ≤ α ≤ 3 and gcd(α, 8) = 1 are 1 or 3.

1. For α = 1, we get β ≡ 11.8−1(mod 1) = 0, which is ≤ min(0, 1). The pair
(α, β) = (1, 0) is then accepted and gives only one value of t:

t =

⌊
1− 0

1

⌋
−

⌈
max(1, 2− 1)− 0

1

⌉
+ 1 = 1.

Therefore, we have only one partition corresponding to the pair (α, β) = (1, 0). By
applying Algorithm 4, we get:

n2 = 1, n1 = 2, a2 = 5 and a1 = 3,
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and thus the partition (23 15).

2. For α = 3, we get β = 1 ≤ min(2, 1), then the pair (α, β) = (3, 1) is accepted and
gives the values:

t = 1, n2 = 1, n1 = 4, a2 = 7 and a1 = 1.

Thus the associated partition is (41 17).

We get, finally
t(11, 8, 2) = 2.

Example 3 Let n = 22 and k = 8, then d = gcd(22, 8) = 2. So, we have two divisors of
d, e = 1 and e = 2.

• Case1: e = 1.
The values of α that satisfies 1 ≤ α ≤ 14 and gcd(α, 8) = 1 are 1, 3, 5, 7, 9, 11 or 13.

1. For α = 1, we get β = 0. The pair (1, 0) is accepted and gives the values:

t = 1, n2 = 2, n1 = 3, a2 = 2 and a1 = 6,

and then the partition (36 22).

2. For α = 3, we get β = 2. The pair (3, 2) is accepted and gives the values:

t = 1, n2 = 2, n1 = 5, a2 = 6 and a1 = 2,

and then the partition (52 26).

3. For α = 5, we get β = 4 > min(4, 2), then the pair (5, 4) is rejected.

4. For α = 7, we get β = 1. The pair (7, 1) is accepted and gives the values:

t = 1, n2 = 1, n1 = 8, a2 = 6 and a1 = 2,

and then the partition (82 16).

5. For α = 9, we get β = 5 > min(8, 2), then the pair (9, 5) is rejected.

6. For α = 11, we get β = 3 > min(10, 2), then the pair (11, 3) is rejected.

7. For α = 13, we have β = 6 > min(13, 2), then the pair (13, 6) is rejected.

• Case2: e = 2.
The values of α that satisfies 1 ≤ α ≤ 7 and gcd(α, 8) = 1 are 1, 3, 5 or 7.

1. For α = 1, we have β = 0. The pair (1, 0) is accepted and gives 1 ≤ t ≤ 2.
Applying Algorithm 4, we obtain two partitions corresponding to the pair (1, 0);
the first one is (37 11) for t = 1 and the second one is (43 25) for t = 2.
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2. For α = 3, we get β = 2. The pair (3, 2) is accepted and gives the values:

t = 1, n2 = 2, n1 = 8, a2 = 7 and a1 = 1,

and then the partition (81 27).

3. For α = 5, we get β = 4 > min(4, 2), the pair (5, 4) is rejected.

4. For α = 7, we get β = 1. The pair (7, 1) is accepted and gives the values:

t = 1, n2 = 1, n1 = 15, a2 = 7 and a1 = 1,

and then the partition (151 17).

We get, finally
t(22, 8, 2) = 7.

After having counting the number t(n, k, s), it would be of considerable interest to explore
the number of partitions of n into k parts with exactly s distinct coprime sizes, which we
denote by g(n, k, s). Thus, let set

g(n, s) =

2n−s(s−1)
2∑

k=s

g(n, k, s). (6)

Theorem 5 For k ≥ s ≥ 2 and n ≥ max{k, s(s+1)
2
}, we have

g(n, k, s) =
∑

d|n
µ

(n

d

)
t(d, k, s), (7)

where µ(.) denotes Möbius function.

Proof. Let T (n, k, s) be the set of partitions of n into k parts with s distinct sizes and
G(n, k, s) the subset of the such partitions but with s distinct coprimes sizes. We notice
that, the mapping from the set T (n, k, s) to

⋃
d|n G(d, k, s) defined by:

(na1
1 na2

2 · · · nas
s ) →

((n1

δ

)a1
(n2

δ

)a2 · · ·
(ns

δ

)as
)

,

is a bijection, where δ = gcd(n1, n2, . . . , ns).

Consequently, we have

t(n, k, s) =
∑

d|n
g(d, k, s). (8)

Hence, the result follows by using the Möbius inversion formula.
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Remark 6 Since t(d, k, s) = 0 if d < max
{

k, s(s+1)
2

}
, the summation in (7) can be

extended only over all divisors d of n such that n
d
≥ max

{
k, s(s+1)

2

}
. For example, if we

take n = 22 and k = 8, then

g(22, 8, 2) = µ (2) t(11, 8, 2) + µ (1) t(22, 8, 2),

and, according to Examples 2 and 3, we get g(22, 8, 2) = 7− 2 = 5. These partitions are:
(37 11), (36 22), (52 26), (82 16) and (151 17).

Using Theorems 5 and 3, we can construct the following table:

n\k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 g(n, 2)
3 1 1
4 1 1 2
5 2 2 1 5
6 1 1 2 1 5
7 3 3 2 2 1 11
8 2 2 2 2 2 1 11
9 3 3 2 3 2 2 1 16
10 2 2 4 1 3 2 2 1 17
11 5 5 3 4 2 3 2 2 1 27
12 2 2 2 2 3 2 3 2 2 1 21
13 6 6 4 5 2 4 2 3 2 2 1 37
14 3 3 5 3 4 1 4 2 3 2 2 1 33
15 4 4 3 3 4 4 2 4 2 3 2 2 1 38
16 4 4 5 3 4 3 3 2 4 2 3 2 2 1 42
17 8 8 5 7 3 5 3 4 2 4 2 3 2 2 1 59
18 3 3 5 2 5 2 4 2 4 2 4 2 3 2 2 1 46
19 9 9 6 7 3 7 3 4 3 4 2 4 2 3 2 2 1 71
20 4 4 4 4 4 3 6 2 3 3 4 2 4 2 3 2 2 1 57

Table 1: g(n, k, 2), 2 ≤ k < n ≤ 20.

From identity (7) we can see that if k ≥ bn
2
c, then t(n, k, 2) = g(n, k, 2). In the present

theorem we present this observation in a more explicit form.

Theorem 7 For n ≥ max{3, k} and k ≥ max{2, bn
2
c}, we have

t(n, k, 2) = g(n, k, 2) = τ(n− k)− χ(n = 2k),

where τ(n) denotes the number of positive divisors of n and χ(n = 2k) = 1 if n = 2k,
0 otherwise.
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Proof. Let us first notice that if k ≥ 1 + max{2, bn
2
c}, then k ≥ dn+1

2
e, and by Identity

(4) the result yields (see [3], Corollary 3). Let now k = max{2, bn
2
c}. Since the result is

true for n = 3, we can assume k = bn
2
c. Let π = (na1

1 na2
2 ) be a partition of n into k parts

with two distinct sizes. If n is even, then n2 = 1, else n > (a1+a2) n2 = k n2 ≥ 2
⌊

n
2

⌋
= n,

a contradiction. Hence, n − k = (n1 − 1) a1, in which case n1 − 1 divides n − k. So, for
each divisor d of n− k, we get n1 = d + 1, a1 = n−k

d
> 0 and a2 = k− n−k

d
> 0, except for

d = 1, where a2 = k − n−k
d

= 0. Thus, the result yields.

Now, if n is odd, then n2 = 1 or (n1, n2) = (3, 2). Indeed, if (n2 = 2 and n1 ≥ 4) or
(n2 ≥ 3), then n > 3a1+2a2 = 2k+a1 ≥ 2

⌊
n
2

⌋
+1 = n, a contradiction. In case of n2 = 1,

by the same argument above, we get for each divisor d of n− k, n1 = d + 1, a1 = n−k
d

> 0
and a2 = k − n−k

d
> 0, except for d = 1, where a2 = k − n−k

d
< 0, which is completed by

the partition (3n−2k 23k−n). This completes the proof.

Remark 8 As shown in the proof above, the t(n, k, 2)’s partitions have been generated
explicitly.
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