Laboratoire d'lnformatique Fondamentale, de Recherche Opérationnelle, de Combinatoire etd ${ }^{\text {d'ECOOOmétrie }}$

Availaible on line at http://www.liforce.usthb.dz bulletin-liforce@usthb.dz

Bulletin du Laboratoire 03 (2015) 18-27

An effective approach for integer partitions using exactly two distinct sizes of parts

Nesrine BENYAHIA TANI ${ }^{1}$, Sadek BOUROUBI ${ }^{2}$, Omar KIHEL ${ }^{3}$

${ }^{1}$ Algiers 3 University,
2 Ahmed Waked Street, Dely Brahim, Algiers, Algeria.
${ }^{2}$ USTHB, Faculty of Mathematics
P.B. 32 El-Alia, 16111, Bab Ezzouar, Algiers, Algeria.
${ }^{3}$ Brock University
Department of Mathematics and Statistics, 500 Glenridge Avenue St. Catharines, Ontario, Canada.
tani.nesrine@univ-alger3.dz or benyahiatani@yahoo.fr, sbouroubi@usthb.dz or bouroubis@yahoo.fr, okihel@brocku.ca

Abstract

In this paper we consider the number of partitions of a positive integer n into parts of a specified number of distinct sizes. We give a method for constructing all partitions of n into parts of two sizes, as well as an explicit formula to count them with a new self-contained proof. As a side effect, by using the möbius function we also give a formula for the number of partitions of n into coprime parts.

Keywords: Integer partitions, partitions into parts of different sizes, partitions into parts of two sizes, divisors number, Möbius function.

1 Introduction

A partition of a positive integer n is a sequence of non increasing positive integers n_{1} (a_{1} times), n_{2} (a_{2} times), \ldots, n_{s} (a_{s} times), with $n_{i}>n_{i+1}$, that sum to n. We sometimes write the such partition $\pi=\left(n_{1}^{a_{1}} n_{2}^{a_{2}} \cdots n_{s}^{a_{s}}\right)$, each n_{i} is called part of the partition π and a_{i} its frequency. The partition function $p(n)$ counts the partitions of n. If we ignore some unpublished work of G.W.V. Leibniz, the theory of integer partitions can find its origin in the work of L. Euler [6]. In fact, he made a sustained study of partitions and partition identities, and exploited them to establish a huge number of results in Analysis in 1748. An excellent introduction to this subject can be found in the book of G. E. Andrews [2].

Definition 1 Let $\pi=\left(n_{1}^{a_{1}} n_{2}^{a_{2}} \cdots n_{s}^{a_{s}}\right)$ be a partition of n. We say that π is a partition into k parts with s distinct sizes if

$$
\left\{\begin{array}{l}
n=a_{1} n_{1}+\cdots+a_{s} n_{s} \tag{1}\\
n_{1}>n_{2}>\cdots>n_{s} \geq 1 \\
a_{1}+\cdots+a_{s}=k \\
a_{1}, \ldots, a_{s} \geq 1
\end{array}\right.
$$

Let $t(n, k, s)$ be the number of solutions of system (1) and $t(n, s)$ the total number of partitions of n into s distinct sizes. Then we have

$$
\begin{equation*}
t(n, s)=\sum_{k=s}^{\frac{2 n-s(s-1)}{2}} t(n, k, s) \tag{2}
\end{equation*}
$$

Example 1 Among 27 partitions of $n=11$ into 2 distinct sizes, the partitions $\left(7^{1} 1^{4}\right)$, $\left(4^{2} 1^{3}\right),\left(3^{1} 2^{4}\right)$ and $\left(3^{3} 1^{2}\right)$ are the only ones which are into 5 parts.

This kind of partitions appeared for the first time in the work of P. A. MacMahon [7]. Next, E. Deutsch presented the number of partitions of n into exactly two odd sizes of parts and the number of partitions of n into exactly two sizes of parts, one odd and one even. One can find these values in the Online Encyclopedia of Integer Sequences (OEIS) [8] as A117955 for the first number, A117956 for the second one and A002133 for the number of partitions of n using only 2 types of parts. In the work of Benyahia-Tani and Bouroubi [3], we can find proof of effective and non-effective finiteness theorems on $t(n, k, s)$. We can cite for example the following results:

Theorem 1 For $k \geq s \geq 2, n \geq k+\frac{s(s-1)}{2}$ and $n \geq \max \left\{k, \frac{s(s+1)}{2}\right\}$, we have

$$
\begin{gather*}
t(n, k, s)=\sum_{i=1}^{\left\lfloor\frac{2 n-s(s-1)}{2 k}\right\rfloor} \sum_{j=1}^{k-s+1} t(n-k i, k-j, s-1), \tag{3}\\
t(n, k, 2)=\sum_{i=1}^{\left\lfloor\frac{n-1}{k}\right\rfloor} \tau_{k-1 \downarrow}(n-k i), \tag{4}
\end{gather*}
$$

where $\tau_{d \downarrow}(k)$ denotes the number of positive divisors of k less than or equal to d.

2 Main Results

One of the aim of this paper is to give an explicit formula for $t(n, k, 2)$ using an effective new approach.

Thus, let consider the system:

$$
\left\{\begin{array}{l}
n=a_{1} n_{1}+a_{2} n_{2} \tag{5}\\
a_{1}+a_{2}=k \\
n_{1}>n_{2} \geq 1 \\
a_{1}, a_{2} \geq 1
\end{array}\right.
$$

and let $m=n_{1}-n_{2}$ throughout the remainder of the paper.
First of all, we introduce the following lemma to prepare the main theorem.

Lemma 2 System (5) has integral solutions if and only if the following conditions are satisfied:
(i) $n \equiv n_{2} k(\bmod m)$,
(ii) $\max \left(1,\left\lceil\frac{n}{k}\right\rceil-m+\chi(k \mid n)\right) \leq n_{2} \leq\left\lfloor\frac{n}{k}\right\rfloor-\chi(k \mid n)$,
where $\chi(k \mid n)=1$ if k divides n, and 0 otherwise.

Proof. From system (5), we have

$$
\left(\begin{array}{cc}
n_{1} & n_{2} \\
1 & 1
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{n}{k}
$$

Since $m>0$, we can write

$$
\binom{a_{1}}{a_{2}}=\frac{1}{m}\binom{n-n_{2} k}{-n+n_{1} k} .
$$

Then, system (5) has integral solutions if and only if m divides $n-n_{2} k, n-n_{2} k>0$ and $-n+n_{1} k>0$. That is,

$$
n \equiv n_{2} k(\bmod m) \text { and } \frac{n}{k}-m<n_{2}<\frac{n}{k} .
$$

Since k can divide n, and $n_{2} \geq 1$, the result holds.
From this lemma, we can now derive the following theorem.

Theorem 3 For $k \geq 2, n \geq \max \{k, 3\}, d=\operatorname{gcd}(n, k)$ and $e \mid d$, let $\mathfrak{I}_{\mathfrak{e}}$ be the set of pairs $(\alpha, \beta) \in \mathbb{N}^{2}$, such that:

- $1 \leq \alpha \leq\left\lfloor\frac{n-k}{e}\right\rfloor$ and $\operatorname{gcd}\left(\alpha, \frac{k}{e}\right)=1$,
- $\beta \equiv\left(\frac{n}{e}\right)\left(\frac{k}{e}\right)^{-1}(\bmod \alpha)$ and $0 \leq \beta \leq \min \left(\alpha-1,\left\lfloor\frac{n}{k}\right\rfloor-\chi(k \mid n)\right)$.

Then
$t(n, k, 2)=\sum_{e \mid d} \sum_{(\alpha, \beta) \in \mathfrak{I}_{e}}\left(\left\lfloor\frac{\left\lfloor\frac{n}{k}\right\rfloor-\chi(k \mid n)-\beta}{\alpha}\right\rfloor-\left\lceil\frac{\max \left(1,\left\lceil\frac{n}{k}\right\rceil+\chi(k \mid n)-\alpha e\right)-\beta}{\alpha}\right\rceil+1\right)$.

Proof. Put $e=\operatorname{gcd}(m, k)$ and let $\alpha=\frac{m}{e}$, that is $1 \leq \alpha \leq\left\lfloor\frac{n-k}{e}\right\rfloor$ and $\operatorname{gcd}\left(\alpha, \frac{k}{e}\right)=1$. By Lemma 2, case (i), we can see that e divides d, and $n_{2} \equiv\left(\frac{n}{e}\right)\left(\frac{k}{e}\right)^{-1}(\bmod \alpha)$.
Let $0 \leq \beta<\alpha$, such that $\beta \equiv\left(\frac{n}{e}\right)\left(\frac{k}{e}\right)^{-1}(\bmod \alpha)$. Then

$$
n_{2}=\beta+t \alpha, t \in \mathbb{Z}
$$

Since $0 \leq \beta<\alpha$ and $\beta \leq n_{2}>0$, then $t \in \mathbb{N}$ and $0 \leq \beta \leq \min \left(\alpha-1,\left\lfloor\frac{n}{k}\right\rfloor-\chi(k \mid n)\right)$. It follows from Lemma 2, case (ii), that

$$
\max \left(1,\left\lceil\frac{n}{k}\right\rceil+\chi(k \mid n)-m\right) \leq \beta+t \alpha \leq\left\lfloor\frac{n}{k}\right\rfloor-\chi(k \mid n) .
$$

Finally, $t(n, k, 2)$ equals the number of positive integers t, such that

$$
\left\lceil\frac{\max \left(1,\left\lceil\frac{n}{k}\right\rceil+\chi(k \mid n)-m\right)-\beta}{\alpha}\right\rceil \leq t \leq\left\lfloor\frac{\left\lfloor\frac{n}{k}\right\rfloor-\chi(k \mid n)-\beta}{\alpha}\right\rfloor
$$

This completes the proof.

Remark 4 One nice application of Theorem 3 concerns the following algorithm which allows us to generate all partitions of n using exactly two distinct sizes of parts.

```
Algorithm 1 Partitions into \(k\) parts with exactly two distinct sizes of parts
Require: \(k \geq 2, n \geq \max \{k, 3\}\)
Ensure: Set of quadruple ( \(n_{1}, a_{1}, n_{2}, a_{2}\) ),
    \(d \leftarrow g c d(n, k)\)
    for each divisor \(e\) of \(d\) do
        for \(\alpha\) from 1 to \(\left\lfloor\frac{n-k}{e}\right\rfloor\) do
            if \(\operatorname{gcd}\left(\alpha, \frac{k}{e}\right)=1\) then
            \(\beta \leftarrow\left(\frac{n}{e}\right)\left(\frac{k}{e}\right)^{-1}(\bmod \alpha)\)
            if \(\beta \leq \min \left(\alpha-1,\left\lfloor\frac{n}{k}\right\rfloor-\chi(k \mid n)\right)\) then
                \(t_{1} \leftarrow\left\lceil\frac{\max \left(1,\left\lceil\frac{n}{k}\right\rceil+\chi(k \mid n)-\alpha e\right)-\beta}{\alpha}\right\rceil\)
                \(t_{2} \leftarrow\left\lfloor\frac{\left\lfloor\frac{n}{k}\right\rfloor-\chi(k \mid n)-\beta}{\alpha}\right\rfloor\)
                for \(t\) from \(t_{1}\) to \(t_{2}\) do
                    \(n_{2} \leftarrow \beta+t \alpha\)
                    \(n_{1} \leftarrow \alpha e+n_{2}\)
                    \(a_{2} \leftarrow\left\lfloor\frac{n-n_{1} k}{n_{2}-n_{1}}\right\rfloor\)
                    \(a_{1} \leftarrow k-a_{2}\)
                end for
            end if
        end if
        end for
    end for
```

This algorithm runs in $O(n)$.

Example 2 Let $n=11$ and $k=8$, then $d=\operatorname{gcd}(11,8)=1$. So, $e=1$ is the only one divisor of d. The values of α that satisfies $1 \leq \alpha \leq 3$ and $\operatorname{gcd}(\alpha, 8)=1$ are 1 or 3 .

1. For $\alpha=1$, we get $\beta \equiv 11.8^{-1}(\bmod 1)=0$, which is $\leq \min (0,1)$. The pair $(\alpha, \beta)=(1,0)$ is then accepted and gives only one value of t :

$$
t=\left\lfloor\frac{1-0}{1}\right\rfloor-\left\lceil\frac{\max (1,2-1)-0}{1}\right\rceil+1=1 .
$$

Therefore, we have only one partition corresponding to the pair $(\alpha, \beta)=(1,0)$. By applying Algorithm 4, we get:

$$
n_{2}=1, n_{1}=2, a_{2}=5 \text { and } a_{1}=3
$$

and thus the partition $\left(2^{3} 1^{5}\right)$.
2. For $\alpha=3$, we get $\beta=1 \leq \min (2,1)$, then the pair $(\alpha, \beta)=(3,1)$ is accepted and gives the values:

$$
t=1, n_{2}=1, n_{1}=4, a_{2}=7 \text { and } a_{1}=1
$$

Thus the associated partition is $\left(4^{1} 1^{7}\right)$.

We get, finally

$$
t(11,8,2)=2
$$

Example 3 Let $n=22$ and $k=8$, then $d=\operatorname{gcd}(22,8)=2$. So, we have two divisors of $d, e=1$ and $e=2$.

- Case1: $e=1$.

The values of α that satisfies $1 \leq \alpha \leq 14$ and $\operatorname{gcd}(\alpha, 8)=1$ are $1,3,5,7,9,11$ or 13 .

1. For $\alpha=1$, we get $\beta=0$. The pair $(1,0)$ is accepted and gives the values:

$$
t=1, n_{2}=2, n_{1}=3, a_{2}=2 \text { and } a_{1}=6
$$

and then the partition $\left(3^{6} 2^{2}\right)$.
2. For $\alpha=3$, we get $\beta=2$. The pair $(3,2)$ is accepted and gives the values:

$$
t=1, n_{2}=2, n_{1}=5, a_{2}=6 \text { and } a_{1}=2,
$$

and then the partition $\left(5^{2} 2^{6}\right)$.
3. For $\alpha=5$, we get $\beta=4>\min (4,2)$, then the pair $(5,4)$ is rejected.
4. For $\alpha=7$, we get $\beta=1$. The pair $(7,1)$ is accepted and gives the values:

$$
t=1, n_{2}=1, n_{1}=8, a_{2}=6 \text { and } a_{1}=2
$$

and then the partition $\left(8^{2} 1^{6}\right)$.
5. For $\alpha=9$, we get $\beta=5>\min (8,2)$, then the pair $(9,5)$ is rejected.
6. For $\alpha=11$, we get $\beta=3>\min (10,2)$, then the pair $(11,3)$ is rejected.
7. For $\alpha=13$, we have $\beta=6>\min (13,2)$, then the pair $(13,6)$ is rejected.

- Case2: $e=2$.

The values of α that satisfies $1 \leq \alpha \leq 7$ and $\operatorname{gcd}(\alpha, 8)=1$ are $1,3,5$ or 7 .

1. For $\alpha=1$, we have $\beta=0$. The pair $(1,0)$ is accepted and gives $1 \leq t \leq 2$. Applying Algorithm 4, we obtain two partitions corresponding to the pair $(1,0)$; the first one is $\left(3^{7} 1^{1}\right)$ for $t=1$ and the second one is $\left(4^{3} 2^{5}\right)$ for $t=2$.
2. For $\alpha=3$, we get $\beta=2$. The pair $(3,2)$ is accepted and gives the values:

$$
t=1, n_{2}=2, n_{1}=8, a_{2}=7 \text { and } a_{1}=1,
$$

and then the partition $\left(8^{1} 2^{7}\right)$.
3. For $\alpha=5$, we get $\beta=4>\min (4,2)$, the pair $(5,4)$ is rejected.
4. For $\alpha=7$, we get $\beta=1$. The pair $(7,1)$ is accepted and gives the values:

$$
t=1, n_{2}=1, n_{1}=15, a_{2}=7 \text { and } a_{1}=1,
$$

and then the partition $\left(\begin{array}{ll}15^{1} & 1^{7}\end{array}\right)$.

We get, finally

$$
t(22,8,2)=7
$$

After having counting the number $t(n, k, s)$, it would be of considerable interest to explore the number of partitions of n into k parts with exactly s distinct coprime sizes, which we denote by $g(n, k, s)$. Thus, let set

$$
\begin{equation*}
g(n, s)=\sum_{k=s}^{\frac{2 n-s(s-1)}{2}} g(n, k, s) . \tag{6}
\end{equation*}
$$

Theorem 5 For $k \geq s \geq 2$ and $n \geq \max \left\{k, \frac{s(s+1)}{2}\right\}$, we have

$$
\begin{equation*}
g(n, k, s)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) t(d, k, s), \tag{7}
\end{equation*}
$$

where $\mu($.$) denotes Möbius function.$

Proof. Let $T(n, k, s)$ be the set of partitions of n into k parts with s distinct sizes and $G(n, k, s)$ the subset of the such partitions but with s distinct coprimes sizes. We notice that, the mapping from the set $T(n, k, s)$ to $\bigcup_{d \mid n} G(d, k, s)$ defined by:

$$
\left(n_{1}^{a_{1}} n_{2}^{a_{2}} \cdots n_{s}^{a_{s}}\right) \rightarrow\left(\left(\frac{n_{1}}{\delta}\right)^{a_{1}}\left(\frac{n_{2}}{\delta}\right)^{a_{2}} \cdots\left(\frac{n_{s}}{\delta}\right)^{a_{s}}\right)
$$

is a bijection, where $\delta=\operatorname{gcd}\left(n_{1}, n_{2}, \ldots, n_{s}\right)$.
Consequently, we have

$$
\begin{equation*}
t(n, k, s)=\sum_{d \mid n} g(d, k, s) \tag{8}
\end{equation*}
$$

Hence, the result follows by using the Möbius inversion formula.

Remark 6 Since $t(d, k, s)=0$ if $d<\max \left\{k, \frac{s(s+1)}{2}\right\}$, the summation in (7) can be extended only over all divisors d of n such that $\frac{n}{d} \geq \max \left\{k, \frac{s(s+1)}{2}\right\}$. For example, if we take $n=22$ and $k=8$, then

$$
g(22,8,2)=\mu(2) t(11,8,2)+\mu(1) t(22,8,2)
$$

and, according to Examples 2 and 3, we get $g(22,8,2)=7-2=5$. These partitions are: $\left(3^{7} 1^{1}\right),\left(3^{6} 2^{2}\right),\left(5^{2} 2^{6}\right),\left(8^{2} 1^{6}\right)$ and $\left(15^{1} 1^{7}\right)$.

Using Theorems 5 and 3, we can construct the following table:

$n \backslash k$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	$g(n, 2)$
3	1																		1
4	1	1																	2
5	2	2	1																5
6	1	1	2	1															5
7	3	3	2	2	1														11
8	2	2	2	2	2	1													11
9	3	3	2	3	2	2	1												16
10	2	2	4	1	3	2	2	1											17
11	5	5	3	4	2	3	2	2	1										27
12	2	2	2	2	3	2	3	2	2	1								21	
13	6	6	4	5	2	4	2	3	2	2	1								37
14	3	3	5	3	4	1	4	2	3	2	2	1						33	
15	4	4	3	3	4	4	2	4	2	3	2	2	1					38	
16	4	4	5	3	4	3	3	2	4	2	3	2	2	1				42	
17	8	8	5	7	3	5	3	4	2	4	2	3	2	2	1				59
18	3	3	5	2	5	2	4	2	4	2	4	2	3	2	2	1		46	
19	9	9	6	7	3	7	3	4	3	4	2	4	2	3	2	2	1		71
20	4	4	4	4	4	3	6	2	3	3	4	2	4	2	3	2	2	1	57

Table 1: $g(n, k, 2), 2 \leq k<n \leq 20$.

From identity (7) we can see that if $k \geq\left\lfloor\frac{n}{2}\right\rfloor$, then $t(n, k, 2)=g(n, k, 2)$. In the present theorem we present this observation in a more explicit form.

Theorem 7 For $n \geq \max \{3, k\}$ and $k \geq \max \left\{2,\left\lfloor\frac{n}{2}\right\rfloor\right\}$, we have

$$
t(n, k, 2)=g(n, k, 2)=\tau(n-k)-\chi(n=2 k)
$$

where $\tau(n)$ denotes the number of positive divisors of n and $\chi(n=2 k)=1$ if $n=2 k$, 0 otherwise.

Proof. Let us first notice that if $k \geq 1+\max \left\{2,\left\lfloor\frac{n}{2}\right\rfloor\right\}$, then $k \geq\left\lceil\frac{n+1}{2}\right\rceil$, and by Identity (4) the result yields (see [3], Corollary 3). Let now $k=\max \left\{2,\left\lfloor\frac{n}{2}\right\rfloor\right\}$. Since the result is true for $n=3$, we can assume $k=\left\lfloor\frac{n}{2}\right\rfloor$. Let $\pi=\left(n_{1}^{a_{1}} n_{2}^{a_{2}}\right)$ be a partition of n into k parts with two distinct sizes. If n is even, then $n_{2}=1$, else $n>\left(a_{1}+a_{2}\right) n_{2}=k n_{2} \geq 2\left\lfloor\frac{n}{2}\right\rfloor=n$, a contradiction. Hence, $n-k=\left(n_{1}-1\right) a_{1}$, in which case $n_{1}-1$ divides $n-k$. So, for each divisor d of $n-k$, we get $n_{1}=d+1, a_{1}=\frac{n-k}{d}>0$ and $a_{2}=k-\frac{n-k}{d}>0$, except for $d=1$, where $a_{2}=k-\frac{n-k}{d}=0$. Thus, the result yields.
Now, if n is odd, then $n_{2}=1$ or $\left(n_{1}, n_{2}\right)=(3,2)$. Indeed, if ($n_{2}=2$ and $n_{1} \geq 4$) or $\left(n_{2} \geq 3\right)$, then $n>3 a_{1}+2 a_{2}=2 k+a_{1} \geq 2\left\lfloor\frac{n}{2}\right\rfloor+1=n$, a contradiction. In case of $n_{2}=1$, by the same argument above, we get for each divisor d of $n-k, n_{1}=d+1, a_{1}=\frac{n-k}{d}>0$ and $a_{2}=k-\frac{n-k}{d}>0$, except for $d=1$, where $a_{2}=k-\frac{n-k}{d}<0$, which is completed by the partition ($3^{n-2 k} 2^{3 k-n}$). This completes the proof.

Remark 8 As shown in the proof above, the $t(n, k, 2)$'s partitions have been generated explicitly.

Acknowledgements

This research was partly supported by L'IFORCE Laboratory.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory. Springer-Verlag, New York (1976).
[2] G. E. Andrews and K. Eriksson, Integer Partitions. Cambridge University Press, Cambridge (2004).
[3] N.B. Tani and S. Bouroubi, Enumeration of the partitions of an integer into parts of a specified number of different sizes and especially two sizes, Journal of Integer Sequences, 14, Article 11.3.6 (2011).
[4] A. Charalambos Charalambides, Enumerative Combinatorics, Chapman \& Hall/CRC (2002).
[5] L. Comtet, Advanced Combinatorics, pp. 133-175. D. Reidel Publishing Company, Dordrecht-Holland, Boston, (1974).
[6] E. Knobloch, Leibniz on combinatorics, pp. 409-430. Historia Math, 1 (1974).
[7] P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 2, pp. 75-113 (1919).
[8] OEIS : The online Encyclopedia of Integer sequences. Published electronically at http://oeis.org, (2008).
[9] I. Pak, Partition bijections, a survey, Ramanujan Journal, 12, 5-75 (2006).
[10] H. Rademacher, On the partition function $p(n)$, Proc. London, Math. Soc., 43, 241-254 (1937).
[11] H. S. Wilf, Lectures on integer partitions, unpublished, http://cis.upenn. edu / wilf.

