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Abstract: The packing chromatic number χρ(G) of a graph G is the smallest
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subsets V1, . . . , Vk, in such a way that every two distinct vertices in Vi are
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determine the packing chromatic number of generalized coronae of paths and
cycles. Moreover, by considering digraphs, and the (weak) directed distance
between vertices, we get a natural extension of the notion of packing coloring
to digraphs. We then determine the packing chromatic number of orientations
of generalized coronae of paths and cycles.

Keywords: Packing coloring, Packing chromatic number, Corona graph,
Path, Cycle

∗Corresponding author: Eric.Sopena@labri.fr.



Packing coloring of some undirected and oriented coronae graphs 37

1 Introduction

All the graphs we considered are simple and loopless. For an undirected graph G, we
denote by V (G) its set of vertices and by E(G) its set of edges. The distance dG(u, v), or
simply d(u, v), between vertices u and v in G is the length (number of edges) of a shortest
path joining u and v. The diameter of G is the maximum distance between two vertices
of G. We denote by Pn the path of order n and by Cn, n ≥ 3, the cycle of order n.

A packing k-coloring of G is a mapping π : V (G) → {1, . . . , k} such that, for every two
distinct vertices u and v, π(u) = π(v) = i implies d(u, v) > i. The packing chromatic
number χρ(G) of G is then the smallest k such that G admits a packing k-coloring. In
other words, χρ(G) is the smallest integer k such that V (G) can be partitioned into k
disjoint subsets V1, . . . , Vk, in such a way that every two vertices in Vi are at distance
greater than i in G for every i, 1 ≤ i ≤ k. A packing coloring of G is optimal if it uses
exactly χρ(G) colors.

Packing coloring has been introduced by Goddard, Hedetniemi, Hedetniemi, Harris and
Rall [12, 13] under the name broadcast coloring and has been studied by several authors in
recent years. Several papers deal with the packing chromatic number of certain classes of
graphs such as trees [3, 4, 13, 16, 17], lattices [4, 5, 9, 10, 14, 18], Cartesian products [4, 9,
16], distance graphs [6, 7, 19] or hypercubes [13, 20, 21]. Complexity issues of the packing
coloring problem were adressed in [1, 2, 3, 8, 11, 13].

The following proposition, which states that having packing chromatic number at most k
is a hereditary property, will be useful in the sequel:

Proposition 1 (Goddard, Hedetniemi, Hedetniemi, Harris and Rall [13]) If H
is a subgraph of G, then χρ(H) ≤ χρ(G).

Fiala and Golovach [8] proved that determining the packing chromatic number is an NP-
hard problem for trees. Determining the packing chromatic number of special subclasses
of trees is thus an interesting problem. The exact value of the packing chromatic number
of trees with diameter at most 4 was given in [13]. In the same paper, it was proved that
χρ(Tn) ≤ (n + 7)/4 for every tree Tn or order n �= 4, 8, and this bound is tight, while
χρ(Tn) ≤ 3 if n = 4 and χρ(Tn) ≤ 4 if n = 8, these two bounds being also tight.

The packing chromatic numbers of paths and cycles have been determined by Goddard
et al.:

Theorem 2 (Goddard, Hedetniemi, Hedetniemi, Harris and Rall [13])

• χρ(Pn) = 2 if n ∈ {2, 3},



38 D. LAÏCHE, I. BOUCHEMAKH, E. SOPENA

• χρ(Pn) = 3 if n ≥ 4,

• χρ(Cn) = 3 if n = 3 or n ≡ 0 (mod 4),

• χρ(Cn) = 4 if n ≥ 5 and n ≡ 1, 2, 3 (mod 4).

The corona G �K1 of a graph G is the graph obtained from G by adding a degree-one
neighbor to every vertex of G. We call such a degree-one neighbor a pendant vertex or
a pendant neighbor. More generally, for a given integer p ≥ 1, the generalized corona
G � pK1 of a graph G is the graph obtained from G by adding p pendant neighbors to
every vertex of G.

A caterpillar of length � ≥ 1 is a tree whose set of internal vertices (vertices with degree at
least 2) induces a path of length �−1, called the central path. Sloper proved the following
result:

Theorem 3 (Sloper [17]) Let CT� be a caterpillar of length �. Then χρ(CT�) ≤ 6 if
� ≤ 34, and χρ(CT�) ≤ 7 otherwise. Moreover, these two bounds are tight.

Since every generalized corona of a path is a caterpillar, we get that for every integer
p ≥ 1, χρ(Pn � pK1) ≤ 6 if n ≤ 34 and χρ(Pn � pK1) ≤ 7 otherwise.

By considering digraphs instead of undirected graphs, and using the (weak) directed dis-
tance between vertices — defined as the number of arcs in a shortest directed path linking
these vertices, in either direction — we get a natural extension of packing colorings to
digraphs. In this paper, we will consider orientations of some undirected graphs, obtained
by giving to each edge of such a graph one of its two possible orientations. The so-obtained
oriented graphs are thus digraphs having no pair of opposite arcs.

In this paper, we determine the packing chromatic number of (simple) coronae of paths and
cycles (Section 2) and of generalized coronae (for k ≥ 2) of paths and cycles (Section 3). In
Section 4, we consider the oriented version of packing colorings and determine the packing
chromatic number of oriented paths, oriented cycles and oriented generalized coronae of
paths and cycles. Some of the presented results for undirected graphs were obtained by
the first author in [15].

2 Coronae of undirected paths and cycles

We study in this section coronae of paths and cycles. We first determine the packing
chromatic number of coronae of paths. Note that any corona Pn�K1 is also a caterpillar
of length n.
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Figure 1: Optimal packing colorings of Pn �K1, 2 ≤ n ≤ 9

Theorem 4 The packing chromatic number of the corona graph Pn �K1 is given by:

χρ(Pn �K1) =

⎧⎪⎪⎨
⎪⎪⎩

2 if n = 1,
3 if n ∈ {2, 3},
4 if 4 ≤ n ≤ 9,
5 if n ≥ 10.

Proof. We obviously have χρ(P1 � K1) = χρ(P2) = 2. Optimal packing colorings of
Pn � K1 are given in Figure 1 for every n, 2 ≤ n ≤ 9. Since P2 � K1 = P4, we have
χρ(P2 � K1) = 3 by Theorem 2. It is easy to observe that the packing 3-coloring of
P3 �K1 depicted in Figure 1 is unique. Hence, if P4 �K1 would be packing 3-colorable,
this packing 3-coloring of P3�K1 would appear on the left or right hand side of P4�K1.
But in that case, the fourth vertex of the central path of P4 �K1 could not be colored.
Hence χρ(P4 �K1) = 4. Finally, since P2 �K1 is a subgraph of P3 �K1 and P4 �K1 is
a subgraph of Pn �K1 for every n, 5 ≤ n ≤ 9, all the packing colorings given in Figure 1
are optimal by Proposition 1.

Let us now consider Pn � K1 with n ≥ 10. Let x1x2 . . . xn denote the central path of
Pn � K1 and yi denote the pendant neighbor of xi for every i, 1 ≤ i ≤ n. Let π be the
4-periodic 5-coloring of Pn �K1 defined as follows (see Figure 2):

π(xi) =

⎧⎨
⎩

1 if i ≡ 1 (mod 2),
2 if i ≡ 2 (mod 4),
3 if i ≡ 0 (mod 4),

π(yi) =

⎧⎨
⎩

1 if i ≡ 0 (mod 2),
4 if i ≡ 1 (mod 4),
5 if i ≡ 3 (mod 4),
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Figure 2: Periodic packing coloring of Pn �K1, n ≥ 8
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Figure 3: Optimal packing colorings of C3 �K1 and C4 �K1

It is not difficult to check that π is indeed a packing 5-coloring of Pn�K1 and, therefore,
χρ(Pn �K1) ≤ 5 for every n ≥ 10.

To finish the proof, it is enough to prove that χρ(P10�K1) ≥ 5, thanks to Proposition 1.
This could be done by a long and tedious case analysis. By computer search, we get
that the largest packing 4-colorable corona of path is P9�K1, which admits two distinct
packing 4-colorings: one is given in Figure 1, the other one is obtained by coloring the
middle pendant vertex by 2 instead of 1. �

In [22], William, Roy and Rajasingh proved that χρ(Cn �K1) ≤ 5 for every even n ≥ 6.
We complete their result as follows:

Theorem 5 The packing chromatic number of the corona graph Cn �K1 is given by:

χρ(Cn �K1) =

{
4 if n ∈ {3, 4},
5 if n ≥ 5.

Proof. Optimal packing 4-colorings of C3 � K1 and C4 � K1 are given in Figure 3.
We claim indeed that these two coronae graphs cannot be packing 3-colored. If there
would exist such colorings then color 1 would necessarily be used for the cycle and its two
neighbors on the cycle would get colors 2 and 3. But then, it would not be possible to
color the pendant neighbor of the vertex with color 1.

Let us now consider Cn � K1 with n ≥ 5. Figure 4 describes 5-colorings of C5 � K1,
C6 � K1 and C7 � K1. Figure 5 describes “almost 4-periodic” packing 5-colorings of
Cn �K1, n ≥ 8, according to the value of n mod 4 (the leftmost pattern of length 4 can
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Figure 4: Optimal packing colorings of C5 �K1, C6 �K1 and C7 �K1

be repeated any number of times). It is not difficult to check that all these colorings are
indeed packing 5-colorings and, therefore, χρ(Cn �K1) ≤ 5 for every n ≥ 5.

It remains to prove that χρ(Cn �K1) ≥ 5 for every n ≥ 5. Assume to the contrary that
there exists a packing 4-coloring of C5�K1. By “unfolding” this coloring and considering
it as a pattern of a 5-periodic coloring for coronae of paths we obtain a packing 4-coloring
of every corona graph Pn � K1, n ≥ 5, in contradiction with Theorem 4. The same
argument proves that there is no packing 4-coloring of Cn � K1 for every n ≥ 6. This
completes the proof. �

3 Generalized coronae of undirected paths and cycles

As observed in the introduction, we know, by Theorem 3, that for every integer p ≥ 1,
χρ(Pn � pK1) ≤ 6 if n ≤ 34 and χρ(Pn � pK1) ≤ 7 otherwise.

When considering generalized coronae of paths or cycles, the following proposition is
useful:

Proposition 6 Let Pn = x1 . . . xn, n ≥ 2, be a path and Pn�pK1, p ≥ 1, be a generalized
corona of Pn. Any packing coloring π of Pn�pK1 with π(xi) = 1 for some vertex xi must
use at least p + 3 colors if 2 ≤ i ≤ n− 1, or at least p + 2 colors if i ∈ {1, n}.

Similarly, if Cn � pK1, p ≥ 3, is a generalized corona of Cn = y1 . . . yn, then any packing
coloring π′ of Cn� pK1 with π′(yi) = 1 for some vertex yi must use at least p + 3 colors.
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Cn �K1, n ≥ 8, n ≡ 3 (mod 4)
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Figure 5: Optimal packing colorings of Cn �K1, n ≥ 8
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Proof. To see that, simply note that if π(xi) = 1 then no two neighbors of xi can receive
the same color. Since the degree of xi is p + 2 if 2 ≤ i ≤ n− 1, or p + 1 if i ∈ {1, n}, the
claim follows. The proof if similar for Cn � pK1. �

In order to describe packing colorings of generalized coronae of paths and cycles, we will
use the following notation in the rest of this paper. Observe first that whenever a vertex
of the path, or the cycle, in any such graph is colored with a color distinct from 1, all
the pendant vertices attached to this vertex can be colored 1. Hence, it is necessary to
give the colors of the pendant vertices only when the color of their neighbor is 1. In
that case, these colors will be given within parenthesis, following the color 1. Such a
sequence of colors, called a pattern, can thus unambigously describe a packing coloring of
a (generalized) corona of a given path. For instance, the colorings of P4�K1 and P5�K1

given in the previous section (see Figure 1) will be denoted by 21(3)41(2) and 21(3)41(3)2,
respectively. For packing colorings of (generalized) coronae of cycles, we will put the whole
sequence of colors in brackets in order to emphasize the fact that the pattern is circular.
For instance, the colorings of C5 � K1 and C6 � K1 given in the previous section (see
Figure 4) will be denoted by [321(5)41(2)] and [31(5)21(3)41(2)], respectively.

Let u and v be two words on the alphabet of colors, such that [u] is a circular pattern.
We will say that the pattern v is compatible with [u] if [uv] is a circular pattern.

The value of the packing chromatic number of generalized coronae of paths Pn�pK1 with
p ≥ 4 is given by the following theorem:

Theorem 7 Let Pn� pK1, p ≥ 4, be a generalized corona of the path Pn. Then we have:

χρ(Pn � pK1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2 if n = 1,
3 if n = 2,
4 if n ∈ {3, 4},
5 if 5 ≤ n ≤ 8,
6 if 9 ≤ n ≤ 34,
7 otherwise.

Proof. If n ≤ 8, optimal packing colorings of Pn � pK1 are given by the patterns 2, 23,
234, 2342, 23425, 234253, 2342532 and 23425324, respectively.

Note that 23425324 is the longest pattern on five colors which do not use color 1 and,
moreover, none of the patterns 123425324 or 234253241 can be used for coloring P9�4K1

(the pendant neighbors of vertices with color 1 cannot be colored). Therefore, χρ(P9 �
pK1) ≥ 6. In [17], Sloper exhibited the following pattern of length 34, which uses colors 2
to 6, and proved that no such pattern of greater length exists:

23425 62342 53264 23524 62352 43265 2342.
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As before, this pattern cannot be extended by adding color 1 to the left or to the right,
so that χρ(P35 � pK1) ≥ 7. Sloper also gave the circular pattern

[23425 62342 57],

of length 12, that uses colors 2 to 7, which can be used when n ≥ 35. By Proposition 6,
all these colorings are optimal. �

The value of the packing chromatic number of generalized coronae of paths Pn � pK1,
when p ∈ {2, 3}, is given by the next two results. We will see that the maximum value of
the packing chromatic number of such graphs is 6, slightly better than the bound given in
Theorem 7. This is due to the fact that the number of pendant vertices is now bounded
by 3, which allows us to use color 1 for coloring the vertices of the path Pn.

Theorem 8 Let Pn � 2K1 be a generalized corona of the path Pn. Then we have:

χρ(Pn � 2K1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 if n = 1,
3 if n = 2,
4 if n ∈ {3, 4},
5 if 5 ≤ n ≤ 11,
6 otherwise.

Proof. To see that χρ(Pn�2K1) ≤ 6 for every n, it is enough to use the following circular
pattern of length 12:

[1(36)2432 56234 25].

Since Pm � pK1 is a subgraph of Pn � pK1 for all m ≤ n, every packing �-coloring of
Pn � pK1 induces a packing �-coloring of Pm � pK1. Therefore, it suffices to construct
optimal packing colorings of P1� 2K1, P2� 2K1, P4� 2K1 and P11� 2K1, to get that all
the claimed values are upper bounds. This can be done by using the patterns 2, 23, 2342
and 1(35)243251(23)4231(25), respectively.

To finish the proof, we need to show that all these bounds are tight. This is obvious for
n = 1 and this is a direct consequence of Proposition 6, for 2 ≤ n ≤ 4, since it implies
that we cannot use color 1 on the vertices of the path, so that no packing coloring using
less colors than stated in the theorem can exist in those cases. For n = 5, Proposition 6
again implies that we cannot use color 1 for the vertices of P5 in a packing 4-coloring and
it is easily checked that no such pattern exists (the longest one is 2342). Finally, we have
to check that there exists no packing 5-coloring of P12 � 2K1. We did it by means of a
computer program. �

Theorem 9 Let Pn � 3K1 be a generalized corona of the path Pn. Then we have:

χρ(Pn � 3K1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 if n = 1,
3 if n = 2,
4 if n ∈ {3, 4},
5 if 5 ≤ n ≤ 8,
6 otherwise.
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Proof. To see that χρ(Pn � 3K1) ≤ 6 for every n, it is enough to consider the following
circular pattern of length 14:

[1(234)5234 26325 4326].

As before, it suffices to construct optimal packing colorings of P1�3K1, P2�3K1, P4�3K1

and P8 � 3K1, to get that all the claimed values are upper bounds. This can be done by
using the patterns 2, 23, 2342 and 23425324, respectively.

To finish the proof, we need to show that all these bounds are tight. This is obvious for
n = 1 and this is a direct consequence of Proposition 6, for n ∈ {2, 3, 5, 9}, since it implies
that we cannot use color 1 on the vertices of the path. It is then not difficult to check
that the longest such patterns are the ones given above, and the result follows. �

We now turn to generalized coronae of cycles Cn � pK1. When p ≥ 4, we have the
following (note the particular case when n = 11):

Theorem 10 Let Cn � pK1, p ≥ 4, be a generalized corona of the cycle Cn. Then we
have:

χρ(Cn � pK1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4 if n = 3,
5 if n = 4,
6 if n ∈ {5, 6},
8 if n = 11,
7 otherwise.

Proof. Note first that by Proposition 6, since p ≥ 4, color 1 cannot be used on the
vertices of Cn in any packing coloring of Cn � pK1 using at most 6 colors.

Packing colorings of Cn�pK1, for 3 ≤ n ≤ 6, are given by the following circular patterns:

[234] [2345] [23456] [234256].

It is not difficult to check that these packing colorings are optimal.

On the other hand, a packing 8-coloring of C11 � pK1 is given by the following circular
pattern:

[23425324678].

Let us show that no packing 7-coloring of C11�pK1 can exist. If color 1 is not used then,
due to the length of the cycle, color 2 can be used at most three times, colors 3 and 4 at
most twice each, and colors 5, 6 and 7 at most once each. Hence, at most 10 vertices of
the cycle can be colored. Now, if color 1 is used on the cycle, then the pendant vertices
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must be colored 2, 3, 4 and 5, as otherwise the packing coloring cannot be extended far
enough. The coloring is then “forced” around the color 1 as . . . 43271(2345)6234 . . . . It
is then easy to check that this pattern cannot be extended to a packing 7-coloring of
C11�pK1 (the smallest extension has length 14 and is given by [43271(2345)623425362]).

Packing 7-colorings of Cn � pK1, for 7 ≤ n ≤ 15, n �= 11, are given by the following
circular patterns:

n = 7 : [2342567];
n = 8 : [23425367];
n = 9 : [234253267];

n = 10 : [2342532467];
n = 12 : [234253246257];
n = 13 : [2342532462357];
n = 14 : [23425362432576];
n = 15 : [234253264235276].

Moreover, all the above circular patterns for n ≥ 9 are compatible with the circular
pattern [23425367] of length 8. Hence, if n ≥ 16, n = 8q + r with 0 ≤ r ≤ 7, r �= 3, a
packing 7-coloring of Cn � pK1 can be obtained by combining q − 1 patterns of length 8
followed by a pattern of length q + r (if r = 0, we thus have q occurrences of the pattern
of length 8).

Finally, for n = 8q + 3, q ≥ 2, a packing 7-coloring of Cn � pK1 can be obtained by com-
bining q − 2 patterns of length 8 followed by the circular pattern [2342532462352432657]
of length 19, which is also compatible with [23425367]. This concludes the proof. �

We now consider the remaining cases, that is p ∈ {2, 3}. For p = 2, we have the following
(note the particular case when n = 9):

Theorem 11 Let Cn � 2K1 be a generalized corona of the cycle Cn. Then we have:

χρ(Cn � 2K1) =

⎧⎪⎪⎨
⎪⎪⎩

4 if n = 3,
5 if n = 4,
7 if n = 9,
6 otherwise.

Proof. The packing colorings of Cn � 2K1, for n ≤ 13, n �= 9 are given by the following
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circular patterns:
n = 3 : [234];
n = 4 : [2345];
n = 5 : [23456];
n = 6 : [234256];
n = 7 : [1(23)423526];
n = 8 : [1(24)3251(24)326];

n = 10 : [1(23)41(23)523421(35)6];
n = 11 : [1(23)4231(25)624325];
n = 12 : [1(23)41(23)521(26)423526];
n = 13 : [1(23)41(23)5231(26)423526].

It is not difficult to check that these colorings are optimal for n ≤ 6. For n ≥ 7, any pack-
ing 5-coloring of Cn�2K1 would induce a packing 5-coloring of P12�2K1, in contradiction
with Theorem 8.

We now consider the case n ≥ 14. Similarly, no packing 5-coloring of Cn � 2K1 can exist
in this case. All the patterns given above for n ≥ 8 are compatible with the circular
pattern [1(23)423526] of length 7. Moreover, the pattern 423524326 of length 9 is also
compatible with the same pattern [1(23)423526]. This allows us to construct a packing
6-coloring of any generalized corona Cn� 2K1 with n ≥ 14. If n = 7q + r, with q ≥ 2 and
0 ≤ r < 7, the coloring is obtained by repeating q− 1 times the pattern u of length 7 and
adding the compatible pattern of length 7 + r (note that since the pattern u is a circular
pattern, it is compatible with itself).

The last case to consider is the case n = 9. A packing 7-coloring of C9 � 2K1 is given by
the circular pattern

[1(24)3251(24)3267].

It is then tedious but not difficult to check that C9 � 2K1 does not admit any packing
6-coloring. (The main idea is that in such a case, each of the colors 4, 5 and 6 can be
used only once on the vertices of C9 while the color 3 can be used at most twice and the
color 2 at most three times, so that color 1 has to be used on some vertex of C9; but in
that case, the colors assigned to the pendant neighbors of this vertex forces the color 1 to
be used again on the cycle, leading eventually to a contradiction.) �

Finally, for p = 3, we have the following:

Theorem 12 Let Cn � 3K1 be a generalized corona of the cycle Cn. Then we have:

χρ(Cn � 3K1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4 if n = 3,
5 if n = 4,
7 if n ∈ {7, . . . , 13, 15, . . . , 22, 24, . . . , 27, 30, . . . , 36, 39, 40, 41}

∪ {45, 47, . . . , 50, 53, 54, 55, 59, 62, 63, 64, 68, 77, 78, 91},
6 otherwise.
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Proof. By Theorem 10 and Proposition 1, we know that χρ(Cn � 3K1) ≤ 7 for every
n ≥ 3, n �= 11. Packing colorings of C3 � 3K1, C4 � 3K1, C5 � 3K1 and C6 � 3K1 are
given by the following circular patterns:

[234], [2345], [23456], [234256],

whose optimality is easy to check.

Table 1 gives, as circular patterns, packing 6-colorings of Cn�3K1 for every n ∈ {14, 23, 29,
38, 44, 46, 61, 67, 69, 73, 76, 82, 92} (pendant neighbors of vertices colored 1 are always as-
signed colors 2, 3 and 4). Since all these patterns begin with 152342 . . . and end with
. . . 524326, they are all pairwise compatible. Therefore, by repeating the pattern of length
14 a certain number of times, and adding one of the patterns of Table 1, we can produce
a packing 6-coloring of Cn � 3K1 in all the following cases, according to the value of n
mod 14:

• n = 14q, n ≥ 14,

• n = 14q + 1, n ≥ 29 (by repeating q − 2 times the pattern of length 14 and adding
the pattern of length 29),

• n = 14q + 2, n ≥ 44 (by repeating q − 3 times the pattern of length 14 and adding
the pattern of length 44),

• n = 14q + 3, n ≥ 73 (by repeating q − 5 times the pattern of length 14 and adding
the pattern of length 73),

• n = 14q + 4, n ≥ 46 (by repeating q − 3 times the pattern of length 14 and adding
the pattern of length 46),

• n = 14q + 5, n ≥ 61 (by repeating q − 4 times the pattern of length 14 and adding
the pattern of length 61),

• n = 14q + 6, n ≥ 76 (by repeating q − 5 times the pattern of length 14 and adding
the pattern of length 76),

• n = 14q + 7, n ≥ 105 (by repeating q− 7 times the pattern of length 14 and adding
the patterns of length 44 and 61),

• n = 14q + 8, n ≥ 92 (by repeating q − 6 times the pattern of length 14 and adding
the pattern of length 92),

• n = 14q + 9, n ≥ 23 (by repeating q − 1 times the pattern of length 14 and adding
the pattern of length 23),

• n = 14q + 10, n ≥ 38 (by repeating q− 2 times the pattern of length 14 and adding
the pattern of length 38),

• n = 14q + 11, n ≥ 67 (by repeating q− 4 times the pattern of length 14 and adding
the pattern of length 67),
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n circular pattern
14 [1523426325 4326]
23 [1523426324 5236423524 326]
29 [1523426324 5236423524 623524326]
38 [1523426324 5236243251 6234253246 23524326]
44 [1523426324 5236243251 6234253264 2352462352 4326]
46 [1523426324 5236423524 3261523426 3245236423 524326]
61 [1523426324 5236243251 6234253246 2352432615 2342632452 3642352432 6]
67 [1523426324 5236243251 6234253246 2352432615 2342632452 3642352462

3524326]
69 [1523426324 5236423524 3261523426 3245236423 5243261523 4263245236

423524326]
73 [1523426324 5236243251 6234253264 2352462352 4326152342 6324523642

3524623524 326]
76 [1523426324 5236243251 6234253246 2352432615 2342632452 3624325162

3425324623 524326]
82 [1523426324 5236243251 6234253246 2352432615 2342632452 3624325162

3425326423 5246235243 26]
92 [1523426324 5236423524 3261523426 3245236423 5243261523 4263245236

4235243261 5234263245 2364235243 26]

Table 1: Circular patterns for the proof of Theorem 12

• n = 14q + 12, n ≥ 82 (by repeating q− 5 times the pattern of length 14 and adding
the pattern of length 82),

• n = 14q + 13, n ≥ 69 (by repeating q− 4 times the pattern of length 14 and adding
the pattern of length 69).

It is now easy to check that the remaining values of n, for which a packing 6-coloring
cannot be produced in this way, are exactly those given in the statement of the theorem.
The fact that, for each of these values, χρ(Cn � 3K1) = 7 has been checked by means of
a computer program. �

4 Oriented paths, oriented cycles and their general-

ized coronae

In this section, we extend the notion of packing colorings to digraphs and study the case
of oriented graphs whose underlying undirected graph is a path, a cycle, or a generalized
corona of a path or a cycle.

Let
−→
D be a digraph, with vertex set V (

−→
D) and arc set E(

−→
D). A directed path of length

k in
−→
D is a sequence u0 . . . uk of vertices of V (

−→
D) such that for every i, 0 ≤ i ≤ k − 1,
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uiui+1 is an arc in E(
−→
D). The weak directed distance between two vertices u and v in

−→
D ,

denoted d−→
D

(u, v), is the shortest length (number of arcs) of a directed path in
−→
D going

either from u to v or from v to u.

A packing k-coloring of a digraph
−→
D is a mapping π : V (

−→
D) → {1, . . . , k} such that, for

every two distinct vertices u and v, π(u) = π(v) = i implies d−→
D

(u, v) > i. The packing

chromatic number χρ(
−→
D) of

−→
D is then the smallest k such that

−→
D admits a packing

k-coloring.

A digraph
−→
O with no pair of opposite arcs, that is uv ∈ E(

−→
O ) implies vu �∈ E(

−→
O ), is

called an oriented graph. If G is an undirected graph, an orientation of G is any oriented

graph
−→
G obtained by giving to each edge of G one of its two possible orientations.

By definition, if
−→
G is any orientation of an undirected graph G then, for any two vertices

u and v in G, d−→
G

(u, v) ≤ dG(u, v). Therefore, every packing coloring of G is a packing

coloring of
−→
G . Hence, we have the following:

Proposition 13 For every orientation
−→
G of an undirected graph G, χρ(

−→
G) ≤ χρ(G).

Note also that Proposition 1 is still valid for oriented graphs:

Proposition 14 If
−→
H is a subgraph of

−→
G , then χρ(

−→
H ) ≤ χρ(

−→
G).

The characterization of oriented graphs with packing chromatic number 2 is given by the
following result:

Proposition 15 For every orientation
−→
G of an undirected graph G, χρ(

−→
G ) = 2 if and

only if (i) G is bipartite and (ii) one part of the bipartition of G contains only sources or

sinks in
−→
G .

Proof. Clearly, χρ(
−→
G ) > 2 whenever G is not bipartite. Assume thus that G is bipartite.

Since color 1 cannot be used for the central vertex of any directed path of length 2, we

get that χρ(
−→
G) = 2 if and only if all the vertices from one of the two parts are sources or

sinks in
−→
G . �

We now determine the packing chromatic number of orientations of paths, cycles, and
coronae of paths and cycles.

For oriented paths, we have the following:
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Theorem 16 Let
−→
Pn be any orientation of the path Pn = x1 . . . xn. Then, for every

n ≥ 2, 2 ≤ χρ(
−→
Pn) ≤ 3. Moreover, χρ(

−→
Pn) = 2 if and only if one part of the bipartition of

Pn contains only sources or sinks in
−→
Pn.

Proof. Since adjacent vertices cannot receive the same color, we clearly have χρ(
−→
Pn) ≥ 2

for all n ≥ 2. By Theorem 2, we know that χρ(Pn) ≤ 3 for every n ≥ 2 and thus, by

Proposition 13, we get that χρ(
−→
Pn) ≤ 3 for every n ≥ 2.

The last claim directly follows from Proposition 15. �

For oriented cycles, we have the following:

Theorem 17 Let
−→
Cn be any orientation of the cycle Cn = x0 . . . xn−1x0. Then, for every

n ≥ 3, 2 ≤ χρ(
−→
Cn) ≤ 4. Moreover,

(1) χρ(
−→
Cn) = 2 if and only if Cn is bipartite (that is, n is even) and one part of the

bipartition contains only sources or sinks in
−→
Cn.

(2) χρ(
−→
Cn) = 4 if and only if

−→
Cn is a directed cycle (all arcs have the same direction),

n ≥ 5 and n �≡ 0 (mod 4).

Proof. Since adjacent vertices cannot receive the same color, we clearly have χρ(
−→
Cn) ≥ 2

for all n ≥ 3. By Theorem 2, we know that χρ(Cn) ≤ 4 for every n ≥ 3 and thus, by

Proposition 13, we get that χρ(
−→
Cn) ≤ 4 for every n ≥ 3.

Claim (1) directly follows from Proposition 15.

Let us now consider Claim (2). By Theorem 2, we know that χρ(Cn) = 4 if and only if

n ≥ 5 and n �≡ 0 (mod 4). By Proposition 13, we get that χρ(
−→
Cn) ≤ 3 in all other cases.

Thus suppose that n ≥ 5 and n �≡ 0 (mod 4). If
−→
Cn is a directed cycle, with all arcs

having the same direction, then d−→
Cn

(xi, xj) = dCn(xixj) for every 0 ≤ i, j ≤ n − 1 and

thus χρ(
−→
Cn) = 4. If

−→
Cn is not a directed cycle, it contains a source vertex, say x0 without

loss of generality. We will prove that, in this case,
−→
Cn admits a packing 3-coloring.

We consider three cases:

• If n ≡ 1 (mod 4), a packing 3-coloring of
−→
Cn is given by the following pattern:

1231 | 2131 | . . . | 2131 | 2.
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Figure 6: Packing colorings for the proof of Theorem 18

• If n ≡ 2 (mod 4), a packing 3-coloring of
−→
Cn is given by the following pattern:

1 | 2131 | . . . | 2131 | 2.

• If n ≡ 3 (mod 4), a packing 3-coloring of
−→
Cn is given by the following pattern:

13 | 1213 | . . . | 1213 | 2.

This completes the proof. �

For orientations of generalized coronae of paths, we have the following:

Theorem 18 Let
−→
G be any orientation of a generalized corona Pn � pK1, with p ≥ 1

and Pn = x1 . . . xn. Then, for every n ≥ 1, 2 ≤ χρ(
−→
G) ≤ 3. Moreover, χρ(

−→
G) = 2 if and

only if one part of the bipartition of Pn � pK1 contains only sources or sinks in
−→
G .

Proof. Since a packing coloring is a proper coloring, we clearly have χρ(
−→
G ) ≥ 2 for every

orientation
−→
G of Pn � pK1, n, p ≥ 1.

We first consider the case p = 1. For any orientation
−→
G of P1�K1, the coloring given by

the pattern 1(2), is clearly a packing 2-coloring of
−→
G . Assume now that n ≥ 2 and let

−→
G

be any orientation of Pn�K1. Let z1, . . . , zn denote the pendant vertices associated with

x1, . . . , xn, respectively. We will construct inductively a packing 3-coloring π of
−→
G . We

first set π(x1) := 1 and π(z1) := 2. Assume now that all the vertices x1, z1, . . . , xi, zi,
1 ≤ i ≤ n− 1 have been colored in such a way that π(xi) = 1 if and only if i is odd and
π(zi) = 1 if and only if i is even. Then, use the following rule:

• If π(xi) = 1 then set π(xi+1) := 5 − π(zi) if zixixi+1 is a directed path (in either
direction) and π(xi+1) := π(zi) otherwise. In both cases, set π(zi+1) := 1.

• If π(xi) �= 1 then set π(zi+1) := 5− π(xi) if xixi+1zi+1 is a directed path (in either
direction) and π(zi+1) := π(xi) otherwise. In both cases, set π(xi+1) := 1.



Packing coloring of some undirected and oriented coronae graphs 53

Figure 7: Configuration for the proof of Theorem 19

The coloring π thus obtained (see Figure 6(a) for an example) has the following property:

(P) every vertex with color 1 is such that all its in-neighbors have the same color α ∈
{2, 3} and all its out-neighbors have the same color 5− α ∈ {2, 3}.

The coloring π is thus a packing 3-coloring of
−→
G .

Consider now the case p ≥ 2. We first color the vertices x1, . . . , xn and one of their
pendant neighbors using the procedure described above, and then color the remaining
pendant vertices in such a way that property (P) is satisfied. Hence, all pendant neighbors
of a vertex with color 2 or 3 will be colored 1, and all pendant neighbors of a vertex with
color 1 will be colored 2 or 3, depending on the orientation of the corresponding arc (see
Figure 6(b) for an example).

The last claim directly follows from Proposition 15. �

Finally, for orientations of generalized coronae of cycles, we have the following:

Theorem 19 Let
−→
G be any orientation of a generalized corona Cn � pK1, with p ≥ 1

and Cn = x0 . . . xn−1. Then, for every n ≥ 3, 2 ≤ χρ(
−→
G ) ≤ 4. Moreover,

(1) χρ(
−→
G ) = 2 if and only if Cn � pK1 is bipartite (that is, n is even) and one part of

the bipartition contains only sources or sinks in
−→
G .

(2) χρ(
−→
G ) = 4 if and only if either:

(2.1)
−→
Cn is a directed cycle, n ≥ 5 and n �≡ 0 (mod 4), or

(2.2)
−→
G contains the oriented graph depicted in Figure 7 as a subgraph, or

(2.3) n ≡ 0 (mod 4) and there exists a vertex xi, 0 ≤ i ≤ n− 1, such that the paths
xixi+1xi+2xi+3 and xi+4 . . . xi−1(indices are taken modulo n) are both directed
paths, but in opposite direction.

Before proving this theorem, we introduce a useful coloring procedure, called standard
coloring procedure (SCP for short), that produces a coloring π of an orientation of the
path Pn = x1 . . . xn:
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1 −→ 2 −→ 1 ←− 2 ←− 1 ←− 3 −→ 1 −→ 2 −→ (1)

3 −→ 1 −→ 2 −→ 1 ←− 2 ←− 1 ←− 3 ←− 1 −→ (3)

Figure 8: Sample colorings produced by SCP

1. Assume (c, c′) ∈ {1, 2, 3}2, with |{c, c′} ∩ {1}| = 1, and S ⊆ V (Pn) are given.

2. Set π(x1) := c and π(x2) := c′.

3. For j = 3, . . . , n, set π(xj) := 1 if π(xj−1) �= 1, π(xj) := π(xj−2) if π(xj−1) = 1 and
xj−1 ∈ S, and π(xj) := 5− π(xj−2) otherwise.

Figure 8 shows colorings of two orientations of P8 = x1 . . . x8 produced by SCP, with
(c, c′) = (1, 2) and S = {x3}, and with (c, c′) = (3, 1) and S = {x4, x8}, respectively.
Note that SCP always produces a packing 3-coloring of the path x1 . . . xn, but not nec-

essarily a packing 3-coloring of
−→
Cn, and that the only possible conflicts lie on the path

xn−2xn−1xnx1x2x3 (such conflicts may appear when a directed path of length 2 or 3 con-
tains x1 as an internal vertex). For instance, the second example depicted in Figure 8 is

a packing 3-coloring of
−→
C8, while the first one is not.

Observe that if c = 1 (resp. c′ = 1) SCP assigns color 1 to every vertex xj such that j is
odd (resp. even), and colors 2 and 3 alternate on other vertices whenever S is empty. If
S is not empty, we have |S|, or |S| − 1 if x1 ∈ S and c = 1 (resp. x2 ∈ S and c′ = 1),
places where the color 2 or 3 is duplicated. Hence, we have the following:

Proposition 20 Let
−→
Pn be any orientation of the path Pn = x1 . . . xn of odd length n− 1

and S be a set of sources or sinks in
−→
Pn with odd indices not containing x1. Consider the

coloring π of
−→
Pn produced by SCP with (c, c′) = (1, α) for some α ∈ {2, 3} and S. Then

we have:

(i) π(xn) = α if |S| is even (resp. odd) and n ≡ 2 (mod 4) (resp. n ≡ 0 (mod 4)),

(ii) π(xn) = 5− α otherwise.

Proof. This directly follows from the above discussion. �

Proof. [of Theorem 19] Since a packing coloring is a proper coloring, we clearly have

χρ(
−→
G ) ≥ 2 for every orientation

−→
G of Cn � pK1, n ≥ 3, p ≥ 1.
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Let
−→
G be any orientation of Cn� pK1 and

−→
Cn be the orientation of the cycle Cn induced

by
−→
G . Denote by zj

i , 1 ≤ j ≤ p, the pendant neighbors of xi, 0 ≤ i ≤ n− 1. We consider
two cases.

If
−→
Cn contains a source vertex, say x0 without loss of generality, then, by Theorem 18,

there exists a packing 3-coloring of
−→
G \ {x0, z

1
0 , . . . , z

p
0}. Since x0 is a source, this packing

coloring can be extended to a packing 4-coloring of
−→
G by coloring x0 with color 4 and all

vertices zj
0, 1 ≤ j ≤ p, with color 1.

If
−→
Cn does not contain any source vertex then

−→
Cn is a directed cycle. By Theorem 17,

we know that there exists a packing 4-coloring π of
−→
Cn. This packing coloring can be

extended to a packing 4-coloring of
−→
G by coloring every pendant vertex zj

i , 0 ≤ i ≤ n−1,

1 ≤ j ≤ p, by π(xi−1) if zj
i xi is an arc in

−→
G and by π(xi+1) otherwise (indices are taken

modulo n). Hence, χρ(
−→
G) ≤ 4 for every orientation

−→
G of Cn � pK1, n ≥ 3, p ≥ 1.

Claim (1) directly follows from Proposition 15.

We now consider Claim (2). If χρ(
−→
Cn) = 4 (which happens, by Theorem 17, if and only

if
−→
Cn is a directed cycle, n ≥ 5 and n �≡ 0 (mod 4)) then, by Proposition 14, χρ(

−→
G ) = 4

(condition 2.1 of the theorem).

If χρ(
−→
Cn) = 2 (which happens, by Theorem 17, if and only if n is even and the orientation−→

Cn of Cn is alternating) then we clearly have χρ(
−→
G) ≤ 3 since both colors 2 and 3 are

available for pendant neighbors of vertices colored 1.

Suppose therefore that χρ(
−→
Cn) = 3. If

−→
Cn is a directed cycle, which implies n ≡ 0

(mod 4), then the packing 3-coloring given by the circular pattern [1213] can be extended

to a packing 3-coloring of
−→
G , as in the proof of Theorem 18.

Assume now that
−→
Cn is not a directed cycle and let π be a packing 3-coloring of

−→
Cn.

This coloring can be extended to a packing 3-coloring of
−→
G except if there exists three

consecutive vertices xi−1xixi+1 (indices are taken modulo n) such that (i) xi is a source

(resp. a sink) in
−→
Cn but not in

−→
G , and (ii) π(xi) = 1 and {π(xi−1), π(xi+1)} = {2, 3}.

Indeed, if such a case occurs, none of the colors from the set {1, 2, 3} can be assigned to
a pendant out-neighbor (resp. in-neighbor) of xi. Otherwise, the packing 3-coloring of−→
Cn can be extended to a packing 3-coloring of

−→
G by (i) assigning color 1 to all pendant

neighbors of vertices colored 2 or 3, (ii) assigning the color π(xi−1) to every pendant

out-neighbor (resp. in-neighbor) of a source (resp. a sink) vertex xi of
−→
G and the color

5− π(xi−1) to its in-neighbors (resp. out-neighbors), and (iii) assigning the color π(xi−1)
to every pendant in-neighbor (resp. out-neighbor) of a vertex xi which is neither a source

nor a sink in
−→
G , and the color π(xi+1) to its out-neighbors (resp. in-neighbors), whenever

xi−1xixi+1 (resp. xi+1xixi−1) is a directed path.
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We thus need to determine in which cases the orientation
−→
Cn of Cn can be colored in such

a way that such a situation does not occur. Such colorings will be called good packing
colorings.

For any subset X of V (Cn), we denote by S(X) the subset of X containing all the vertices

that are either a source or a sink in
−→
Cn, and by S∗(X) the subset of S(X) containing all

the vertices that are neither a source nor a sink in
−→
G . Hence, S∗(V (Cn)) is precisely

the set of vertices we must care about. Obviously, if S∗(V (Cn)) is empty, every packing

3-coloring of
−→
Cn is good. We thus assume in the rest of the proof that S∗(V (Cn)) is not

empty. Note also that |S(V (Cn))| is even for every orientation
−→
Cn of Cn.

In the following, we will construct good packing 3-colorings, when this is possible, using

SCP with an adequate set S either on the whole cycle
−→
Cn or on part of it.

We consider four cases, according to the value of n mod 4:

• Case 1: n ≡ 0 (mod 4).
Consider first the case n = 4. The only possible packing 3-coloring of any orientation−→
C4 of Cn with χρ(

−→
C4) = 3 is 1213. It is then easy to check that the only orientation−→

C4 of C4 for which we cannot produce a good packing 3-coloring is the one given in
Figure 7. In the following, we can thus assume n ≥ 8.

Since n is even, Cn is bipartite. Let (A, B) denote the bipartition of V (Cn). If
|S∗(A)| is even or |S∗(B)| is even, a good coloring can be obtained by means of
SCP. Suppose without loss of generality that A = {x0, x2, . . . , xn−2} and |S∗(A)| is
even. Consider the coloring π produced by SCP, starting at x0, with (c, c′) = (1, 2)
and S = S∗(A). Since n ≡ 0 (mod 4) and |S∗(A)| is even, by Proposition 20, π is

a good packing 3-coloring of
−→
Cn.

If both |S∗(A)| and |S∗(B)| are odd, but S(A) \S∗(A) �= ∅ or S(B) \S∗(B) �= ∅, we
can proceed in a similar way by using, without loss of generality, the set S ′(A) =
S∗(A)∪ {x2j}, for some vertex x2j ∈ S(A) \ S∗(A), instead of the set S∗(A) in SCP
since |S ′(A)| is even.

Finally, suppose that both |S∗(A)| and |S∗(B)| are odd, S(A) = S∗(A) and S(B) =

S∗(B), that is, every source or sink in
−→
Cn is neither a source nor a sink in

−→
G . We

consider two cases:

– |S∗(A)| = |S∗(B)| = 1.
Without loss of generality, we may assume that x0 is a source and xi, for some
odd i, 1 ≤ i ≤ n−1, is a sink. Hence, x0 . . . xi and xn−1 . . . xi are both directed

paths of odd length in
−→
Cn. Suppose first that i = 1, that is, x0 is a source and

x1 is a sink. A good packing 3-coloring of
−→
Cn is then given by the following

pattern (the colors of x0 and xi = x1 are dotted):

[1̇2̇ 3121 . . . 3121 32].
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Similarly, if i ≡ 1 (mod 4), a good packing 3-coloring of
−→
Cn is then given by:

[1̇ 2131 . . . 2131 2̇ 3121 . . . 3121 32].

Now, if i ≡ 3 (mod 4), i ≥ 7, a good packing 3-coloring of
−→
Cn is given by:

[1̇23 1213 . . . 1213 2̇ 1312 . . . 1312].

The remaining case is i = 3, which corresponds to condition (2.3) of the the-

orem. We will prove that in that case
−→
Cn does not admit any good pack-

ing 3-coloring, which implies χρ(
−→
Cn) = 4. Note first that the directed path−→

P = x0xn−1 . . . x3 has length n− 3 ≡ 1 (mod 4). Let us consider the possible

packing 3-colorings of
−→
P . Clearly, the pattern 123 can only be used on the

left end of
−→
P , while the pattern 321 can only be used on the right end of

−→
P .

Moreover, the only circular good pattern is [1213]. Therefore, up to mirror

symmetry (reversing the orientation of every arc of
−→
Cn gives the same oriented

graph), there are six possible packing 3-colorings of
−→
P , given by the following

patterns:
1213 . . . 1213 12,

1213 . . . 1213 21,

123 1213 . . . 1213 121,

2131 . . . 2131 21,

3121 . . . 3121 31,

3121 . . . 3121 32.

It is then not difficult to check that none of these colorings can be extended

to a good packing 3-coloring of
−→
Cn, as shown by the following diagrams (the

colors of x0 and x3 are dotted):

2 ←− 1̇ −→ ? −→ ? −→ 2̇ ←− 1

2 ←− 1̇ −→ ? −→ ? −→ 1̇ ←− 2

2 ←− 1̇ −→ ? −→ ? −→ 1̇ ←− 2

1 ←− 2̇ −→ ? −→ ? −→ 1̇ ←− 2

1 ←− 3̇ −→ ? −→ ? −→ 1̇ ←− 3

1 ←− 3̇ −→ ? −→ ? −→ 2̇ ←− 3

– |S∗(A)| ≥ 3 or |S∗(B)| ≥ 3.
Suppose |S∗(A)| ≥ 3, without loss of generality. Since n ≡ 0 (mod 4) and
both |S∗(A)| and |S∗(B)| are odd, by Proposition 20, applying SCP starting
at x0 leads in all cases to a “bad” coloring, that assigns to xn−1x0x1 either
the pattern 213 or 312 if x0 ∈ S∗(A), or the pattern 212 or 313 otherwise (in
that case, xn−1x0x1 is a directed path, in either direction). We thus need to
“correct” this bad coloring, which can be done by replacing a sequence 1α . . . β1
of the coloring produced by SCP by 1α . . . β ′1 with β ′ = 5− β.

We consider three subcases.
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1. There exist a ∈ S∗(A) and b ∈ S∗(B) with d−→
Cn

(a, b) = 1.
We may assume without loss of generality that a = xi is a source and
b = xi+1 is a sink. Hence, we have the following configuration (— stands
for an arc in either direction):

— ←− a −→ b ←− — —

Consider the following coloring of this configuration (the colors of a and b
are dotted):

1 — 3 ←− 2̇ −→ 1̇ ←− 2 — 3 — 1

If the vertex to the right of b is not a source, the remaining part of the cycle
is not empty (since n ≡ 0 (mod 4)) and this coloring can be extended to

a good packing 3-coloring of
−→
Cn by means of SCP. To see that, observe

that SCP would have produced the following bad coloring on the same
configuration (the bad color which implies our claim, since our coloring
has modified this color, appears in bold):

1 — 3 ←− 1̇ −→ 3̇ ←− 1 ←− 2 — 1

We finally claim that we can always find some i such that xi ∈ S∗(A) (resp.
xi ∈ S∗(B)), xi+1 ∈ S∗(B) (resp. xi+1 ∈ S∗(A)) and xi+2 /∈ S∗(A) (resp.
xi+2 /∈ S∗(B)). This simply follows from the fact that if no such i exists,

then the orientation
−→
Cn of Cn is alternating, which implies χρ(

−→
Cn) = 2,

contrary to our assumption.

2. There exist a ∈ S∗(A) and b ∈ S∗(B) with d−→
Cn

(a, b) ≡ 1 (mod 4), d−→
Cn

(a, b) ≥
5, and Subcase 1 does not occur.
Again, we assume without loss of generality that a = xi is a source and
b = xj is a sink. Since subcase 1 does not occur, we necessarily have the
following configuration:

←− ←− a −→ −→ . . . −→ −→ −→ b ←− ←−
We then color this configuration as follows (the pattern 2131 is repeated
as many times as necessary):

1 — 3 ←− 2 ←− 1̇ −→ (2131)∗ −→ 2̇ ←− 3 ←− 1

As in the previous subcase, the remaining part of the cycle is not empty.

Hence, this coloring can be extended to a good packing 3-coloring of
−→
Cn by

means of SCP, since SCP would have produced the following bad coloring
on the same configuration:

1 — 3 ←− 1 ←− 2̇ −→ (1312)∗ −→ 1̇ ←− 2 ←− 1

3. There exist a ∈ S∗(A) and b ∈ S∗(B) with d−→
Cn

(a, b) ≡ 3 (mod 4), d−→
Cn

(a, b) ≥
7, and Subcases 1 and 2 do not occur.
This subcase can be solved similarly as the previous one. We have the
following configuration:

←− a −→ −→ −→ . . . −→ −→ −→ −→ b ←−
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for which we use the following coloring:

1 ←− 2̇ −→ 3 −→ (1213)∗ −→ 2 −→ 1̇ ←− 2

Again, the remaining part of the cycle is not empty and this coloring can

be extended to a good packing 3-coloring of
−→
Cn by means of SCP, since

SCP would have produced the following bad coloring on the configuration:

1 ←− 2̇ −→ 1 −→ (3121)∗ −→ 3 −→ 1̇ ←− 3

4. None of the previous cases occurs.
If none of the previous cases occurs, then the vertices of S∗(A) and S∗(B)

necessarily alternate on
−→
Cn and the weak directed distance between any

two consecutive such vertices equals 3. Hence,
−→
Cn is a sequence of directed

paths of length 3 in opposite directions. Since |S∗(A)| = |S(A)| is odd, the
length of Cn equals 6k for some odd k, which contradicts the assumption
n ≡ 0 (mod 4). Therefore, this last subcase cannot occur.

• Case 2: n ≡ 2 (mod 4).
In this case Cn is again bipartite and, using the same procedure as in Case 1, a good

packing 3-coloring of
−→
Cn can be produced whenever (i) |S∗(A)| or |S∗(B)| is odd, or

(ii) both |S∗(A)| and |S∗(B)| are even, but S(A) \ S∗(A) �= ∅ or S(B) \ S∗(B) �= ∅,
where (A, B) denotes the bipartition of V (Cn).

Suppose now that both |S∗(A)| and |S∗(B)| are even (they cannot be both equal
to 0), S(A) = S∗(A) and S(B) = S∗(B). In that case, SCP produces a bad coloring

of
−→
Cn and this coloring can be “corrected” in exactly the same way as in Case 1

since, for doing that, we only need n to be even.

• Case 3: n is odd.
Consider the set S = S(V (Cn)), that is the set of vertices that are either a source

or a sink in
−→
Cn. Without loss of generality, suppose that x0 is a source and consider

the coloring π produced by SCP on the path x0x1 . . . xn−1, starting at x0, with

(c, c′) = (2, 1) and S. If π(xn−1) = 3, π is a packing 3-coloring of
−→
G , of the form

21 . . . 13, and we are done.

If π(xn−1) = 2 (π is not a packing coloring of
−→
G ), consider the coloring π′ produced

by SCP on the path x1x2 . . . xn−1x0, starting at x1, with (c, c′) = (3, 1) and S. Let
now X denote the set of sources or sinks which are assigned color 1 by π, and X ′ the
set of sources or sinks which are assigned color 1 by π′. We clearly have X ∩X ′ = ∅
and X ∪X ′ = S \ {x0} (since x0 is a source, π(x0) �= 1 and π′(x0) �= 1). Therefore,
since |S| is even, we get that |X[ and |X ′| do not have the same parity. Hence, since
π(x0) = 2 and π(xn−1) = 2, starting with π′(x1) = 3 necessarily gives π′(x0) = 2.

This proves that π′ is a good packing 3-coloring of
−→
G , of the form 231 . . . 1.

This concludes the proof. �
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5 Discussion

In this paper, we have determined the packing chromatic number of coronae and gener-
alized coronae of paths and cycles. We also extended to digraphs the notion of packing
coloring and determined the packing chromatic number of orientations of such graphs.

In particular, we have proved that every orientation of a generalized corona of a path
admits a packing 3-coloring. Using a similar proof, it is not difficult to extend this result
to the more general case of oriented trees (we can inductively construct a packing coloring
satisfying the property (P) such that vertices with color 1 correspond to one part of the
bipartition of the tree). Hence, we also have:

Theorem 21 Let T be a tree. For any orientation
−→
T of T , χρ(

−→
T ) ≤ 3.

Since every caterpillar is a tree, we get that every oriented caterpillar has packing chro-
matic number at most 3. However, we leave as an open question the characterization of
undirected caterpillars with packing chromatic number at most 4, 5 and 6 (by Theorem 3
we know that every caterpillar has packing chromatic number at most 7 and characterizing
caterpillars with packing chromatic number at most 2 or 3 is easy).
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of trees, Cartesian products and some infinite graphs. Electronic Notes in Discrete
Mathematics 30 (2008), 57–61.

[17] C. Sloper. An eccentric coloring of trees. Australasian Journal of Combinatorics 29
(2004), 309–321.

[18] R. Soukal and P. Holub. A note on the packing chromatic number of the square
lattice. Electronic Journal of Combinatorics 17 (2010).

[19] O. Togni. On packing colorings of distance graphs. Discrete Applied Mathematics 167
(2014), 280–289.

[20] P. Torres and M. Valencia-Pabon. The packing chromatic number of hypercubes.
Discrete Applied Mathematics 190-191 (2015), 127–140.
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