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1 Introduction

Let (P,≤) be a finite partially ordered set (briefly poset P ). A subset of X is called a
chain (resp. antichain) if every two elements in X are comparable ( resp. incomparable).
The number of elements in a chain is the length of the chain. The height of an element
x ∈ P , denoted by h(x), is the length of a longest chain in P having x as its maximum
element. The height of a poset P , denoted h(P), is the length of a longest chain in P .
The i-level or height-i-set of P , denoted by Ni, is the set of all elements of P which have
height i.

Let p and q be two elements of P . We say q covers p and we denote p ≺ q, if p ≺ v ≤ q
implies v = q. Furthermore we denote by MaxP (resp. MinP ) the set of all maximal
(resp. minimal) elements of P . A subset I of P of the form I = {v ∈ P, p ≤ v ≤ q}
(denoted [p, q]) is called an interval. It is maximal if p (resp. q) is a minimal (resp.
maximal) element of P . Denote by I(P ) the family of maximal intervals of P. The
hypergraph H(P )=(P,I(P )) whose vertices are the elements of P and whose edges are
the maximal intervals of P is said to be the order-interval hypergraph of P.

A subset A (resp. T ) of P is called independent (resp. a point cover or transversal set)
if every edge of H contains at most one point of A (resp. at least one point of T ). A
subset M (resp. R) of I is called a matching (resp. an edge cover) if every point of P
is contained in at most one member of M (resp. at least one member of member of R).
Let

α(H) = max{|A| : A is independent},
τ(H)) = min{|T | : T is a point cover},
ν(H) = max{|M| : M is a matching},
ρ(H) = min{|R| : R is an edge cover}.

These numbers are called the independence number, the point covering number, the match-
ing number, and the edge covering number of H(P ), respectively. It is easy to see that
ν(H) ≤ τ(H) and α(H) ≤ ρ(H). We say that H has the König property if ν(M) = τ(M)
and dual König property if ν(H∗) = τ(H∗), i.e., α(H) = ρ(H) since α(H) = ν(H∗) and
ρ(H) = τ(H∗). This class of hypergraphs has been studied intensively in the past and
we find interesting results from an algorithmic point of view as well as min-max relations
[2]-[7] and [9].

Let P1 = (E1,≤1) and P2 = (E2,≤2) be two posets such that E1 and E2 are disjoint. The
disjoint sum P1 + P2 of P1 and P2 is the poset defined on E1 ∪ E2 such that x ≤ y in
P1 + P2 if and only if (x, y ∈ P1 and x ≤1 y) or (x, y ∈ P2 and x ≤2 y ). The linear sum
P1 ⊕ P2 of P1 and P2 is the poset defined on E1 ∪ E2 such that x ≤ y in P1 ⊕ P2 if and
only if (x, y ∈ P1 and x ≤1 y ) or (x, y ∈ P2 and x ≤2 y ) or (x ∈ P1 and y ∈ P2).

Let A ⊆ MaxP1 and B ⊆ MinP2 with A and B are not empty. The quasi-series com-
position of P1 and P2 denoted P = (P1, A) ∗ (P2, B) is the poset P = (E1 ∪ E2,≤) such
that: x ≤ y if ( x, y ∈ E1 and x ≤1 y ) or ( x, y ∈ E2 and x ≤2 y ) or ( x ∈ E1 , y ∈ E2

and there exist α ∈ A, β ∈ B such that x ≤1 α and β ≤2 y.
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2 N-free poset

A poset P is said to be series-parallel poset, if it can be constructed from singletons P0

(P0 is the poset having only one element) using only two operations: disjoint sum and
linear sum. It may be characterized by the fact that it does not contain the poset N as
an induced subposet [14], [15]. P is called N-free if and only if its Hasse diagram does
not contain four vertices v1, v2, v3, v4, where v1 ≺ v2, v2 Â v3 and v3 ≺ v4, and v1 and v4,
v1 and v3, v2 and v4, are incomparable. The class of N-free posets contains the class of
series-parallel posets. Habib and Jegou in [12] defined the Quasi- Series-Parallel (QSP
for short) class of posets, as the smallest class of posets that contains P0 and closed under
quasi-series composition and lineair sum. They proved that a poset is N-free if and only
if it is QSP poset. The following theorem gives many other characterizations of N-free
posets ( see [11] , [12] and [13]):

Theorem 1 The four following properties are equivalent:

i) P is QSP.

ii) P is an N-free poset.

iii) P is a C.A.C. (Chain-Antichain Complete) order (i.e. every maximal chain inter-
sects each maximal antichains).

iv) The Hasse diagram of P is a line-digraph.

v) For every two elements p, q ∈ P , if N(p)∩N(q) 6= ∅ then N(p) = N(q), where N(p)
denoted the set of all elements of P which cover p in P .

It is known that the order-interval hypergraph H(P ) has the König and dual König
properties for the class of series-parallel posets [5]. In [6], it is proved that H(P ) has again
the dual König property for the class of a posets that contains the series-parallel posets
and whose members have comparability graphs which are distance-hereditary graphs or
generalizations of them. If P is an N-free poset, the König property is not satisfied in

Figure 1: ν(H(P )) = 1 and τ(H(P )) = 2
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general see [6]. The poset of Figure 1 is an example where ν(H(P )) = 1, τ(H(P )) = 2.
In this paper, we consider two classes of N-free posets and prove that the dual König
property of the order-interval hypergraph of these classes of posets are satisfied.

2.1 Blocks in an N-free poset

There is a useful representation of an N-free poset, namely the block ( see [1]). If P is
an N-free poset with levels N1.., Nr, a block of P is maximal complete bipartite graph in
the Hasse diagram of P . More precisely, a block of P is a pair (Ai, Bi), where Ai, Bi ⊂ P
such that Ai is the set of all lower covers of every x ∈ Bi and Bi is the set of all upper
covers of every y ∈ Ai. By convention (∅,MinP ) and (MaxP, ∅) are blocks

In this paper, we say that (Ai, Bi) and (Aj, Bj) are adjacent if there exists at least one
vertex of Ai ∪ Bi in the same interval in P with at least one vertex of Aj ∪ Bj. For
example, the blocks ({b}, {c, e}) and ({a, c}, {d}) of poset of Figure 2 are adjacent.

a b 

c 

d e 

Figure 2: P is N-free with blocks (∅, {a, b}), ({b}, {c, e}), ({a, c}, {d}) and ({d, e}, ∅) .

2.2 N-free poset of Type 1

Definition 1 Let P be a connected poset with levels N1,N2,...Nr. We say that P is of
Type 1 if there exists an integer n such that the induced subposet Pn,n+1 formed from the
consecutive levels Nn ∪Nn+1 is of the form Nn ⊕Nn+1.

For the class of posets of Type 1, we give the following result:

Theorem 2 Let P be a poset of Type 1. Then H(P ) has the dual König property and we
have: α(H(P )) = ρ(H(P )) = Max {|MaxP |, |MinP |}.

Proof. We denote by MinP = {a1, a2, ..., ak} and MaxP = {b1, b2, ..., bl}. Consider the
family of edges I ofH(P ) such that I = {[aj, bj], j = 1, . . . , k}∪{[ak, bj], j = k+1, . . . , l} if
k ≤ l and I = {[aj, bj], j = 1, . . . , l}∪{[aj, bl], j = l+1, . . . , k} if k > l. It is not difficult to
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see that I is an edge-covering family ofH(P ) of cardinal equal to Max{|MaxP |, |MinP |}.
Hence, α(H(P )) = ρ(H(P )) = Max {|MaxP |, |MinP |} ¤

In particular, the order-interval hypergraph of the N-free poset of Type 1 has the dual
König property.

3 N-free poset of Type 2

Definitions

1. Let P be a connected poset with levels N1,N2,...Nr. We say that P is an N-free
poset of Type 2, if there exists an integer n such that Nn is the first level where
the induced subposet P1,n is disconnected of the form Pn,r = P1 + P2 + ... + Pl, and
∀i ∈ L = {1, .., l}, Pi is connected poset of Type 1.

2. We say that the subposet Pi is linked with the subposet Pj by a vertex z of N1, if we
can obtain intervals of the form [z, x] and [z, y] for each x ∈ MaxPi and y ∈ MaxPj,
and we say z links Pi with Pj.

3. We say that Pi is linked with Pj by the subset R of N1, if for every element z of R,
z links Pi with Pj.

Example 1 The poset P of Figure ?? is N-free of Type 2; it is easy to see that N2 is
the first level where P2,3 = P1 + P2 is disconnected poset with P1and P2 are of Type 1.
On the other hand, Q is an N-free poset but not of Type 2.

N

N

N

3

2

1

P
P

1

2

N 4
Q

1
2

P Q

Q

In order to prove the dual König property of H(P ), where P is N-free of Type 2, let us
introduce the following notations:
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Notation

1. For every subposet Pk, we denote by Rk the subset of N1, where every element of
Rk is comparable with all elements of MaxPk, and Rk does not link Pk with any
other poset Ps, s ∈ L. The set Rk can be empty.

2. For every subposet Pk, we denote by R′
ik, i ∈ Ik = {1, 2, ..., |N1|}, the subset of N1

which links Pk with the same family of poset {Ps}s∈L. We can obtain R′
ik = R′

jl for
i 6= j and k 6= l.

Observation 3 The family {R′
ik}k∈L,i∈Ik

is pairwise disjoint.

To illustrate the classe of N-free posets of Type 2, see Figure 3.

P
1

P P P
2 m l

Block

Block

Block 

Block

R R’ R’ R’ R’ R
1 l1 1 2 1 m 1 m 2

Figure 3: Illustration of an N-free poset of Type 2

3.1 Maximal stable sets of H(P )

In our poset, it is clear that for a linked subposet family Fk = {Pl}l∈L , we can obtain
blocks (Ai, Bi) in the level Nn−j, for j ∈ {0, 1, ..., n−1}, i.e. Bi intersects Nn−j, and every
element x of Ai, x links a subfamily Fs of Fk, we say (Ai, Bi) links Fs. Such blocks must
exist in Nn since P is N-free poset of Type 2.

We can note the following observation:

Observation 4 For every block (Ai, Bi) which links Fs, Bi has the following partition:

Bi =
⋃
t∈T

Bi,t

Where ∀x ∈ Bi,t, x is comparable with a vertex of MinPt, where Pt ∈ Fs, and |Fs| = |T |
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Let us now give two algorithms to find maximal stable sets of an N-free poset of Type 2,
the second algorithm can be applied only after the first.

Maximal Stable-set 1 Algorithm

INPUT: An N-free poset P of Type 2. F1, F2, . . . , Fm all linked subposet families of P .

OUTPUT: Maximal stable set of H(P ).

1. Foreach k, from k = 1 to m.

2. Foreach j, from j = 0 to n− 1, in Nn−j we determine Ck,j by taking for every block
(Ai, Bi) which links a subfamily of Fk, one vertex from each Bi,t such that:

i) If there exists a family {Bi,t}i from block family which are adjacent pairwise,
we take only one vertex from only one set {Bi,t}i.

ii) We delete every vertex which is in the same interval with a vertex of Ck,t, t < j.

3. Put Ck =
⋃n−1

j=0 Ck,j.

4. Output C = (
⋃m

k=1 Ck) ∪ (
⋃

l∈L Rl). End

Theorem 5 The set C is maximal stable set of H(P ).

Proof. C is a stable set by construction of every Ck. It remains the maximality of C.
We say that an interval I crosses a block (Ai, Bi) if I intersects Bi. Let us show that for
every interval I of P , I contains one vertex of C, and this means that for every x ∈ P ,
C ∪ {x} will not be a stable set.
In the case where I does not cross any block, the minimal vertex of I will be in Rl.
Now, In the case where I crosses a block (Ai, Bi), let y be a commun vertex of Bi and I.
If y ∈ C, then I intersect C. Otherwise, y /∈ C that means that y is in the same interval
J with an element y′ of C. Consequently, I and J will have minimal vertices in R′

pq and
maximal vertices in MaxPl, this gives y′ ∈ I. ¤

Example 2 The poset of Figure 4 is N-free of Type 2, where P1, P2 and P3 are the
supbosets surrounded from left to right, we have: R′

11 = R′
12 = {a, b}, R′

21 = R′
22 = R′

13 =
{c}, R′

31 = R′
23 = {d}, R′

41 = R′
33 = {e} and R3 = {f}. The framed vertices form the

maximal stable set C of H(P ) obtained by Maximal Stable-set 1 algorithm.

We will need the following definition:
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a b c d e f

Figure 4: An N-free poset P of Type 2. Applying the Maximal Stable-Set 1 algorithm on
P ; the framed vertices form a maximal stable set of H(P ).

Definition 2 In H(P ), for every vertex x ∈ P , the stable adjacent Mx to x is the set of
all vertices y such that x and y are in the same interval of P , where Mx is stable. Mx can
be equal to {x}. We say MD is stable adjacent to the set D of P if it is stable adjacent
to every vertex of D.

We can write C = D1 ∪D2 ∪ ... ∪Dm the stable set obtained from Maximal Stable-set 1
algorithm, where Di are subblocks of P . We determine a new maximal stable set C ′ from
C as follows:

Maximal Stable-set 2 Algorithm

INPUT : An N-free poset P of Type 2, and maximal stable set C = D1 ∪D2 ∪ ... ∪Dm.

OUTPUT: A new maximal stable set C ′.

1. C ′ := C.

2. Foreach i, from i = 1 to m.

2. We determine MDi
the stable adjacent to Di such that C − (∪t=i

t=1Dt)∪ (∪t=i
t=1MDt) is

stable.

3. We take C ′ := C − (∪t=i
t=1Dt) ∪ (∪t=i

t=1MDt).

4. Stop.

By construction of C ′, we deduce the following result:
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Proposition 6 The set C ′ is a maximal stable set of H(P ).

We denote by C ′
k the set of all vertices obtained from every xi ∈ Ck using Maximal Stable-

set 2 algorithm.

As a consequence of the previous algorithms, we observe that:

Observation 7 Consider the subposet family Fk linked by R′
pq:

1. The set R′
pq has the following partition:

R′
pq =

⋃
s

R′
pq,s

where for every s, R′
pq,s is a stable adjacent to As a subset of C ′

k.

2. It will be possible to obtain that the family {As}s is pairwise disjoint.

Proof. To prove the second observation, we suppose that x is a commun vertex of As

and As′ . Let I ( resp. J ) an interval containing x with minimal element cj ∈ R′
pq,s ( resp.

cj′ ∈ R′
p′q′,s′ ). In I (resp. J) there exists a vertex z (resp. z′) wich is incomparable with

every vertex of R′
p′q′,s′ ( resp. R′

pq,s) ( we take as an example, the vertex z (resp. z′) such
that cj ≺ z (resp. cj′ ≺ z′)). Otherwise, we will obtain R′

pq,s = R′
p′q′,s′ since P is N-free.

In this case, we can reconstruct As and As′ by starting by z and z′ respectively to obtain
two new disjoint sets. ¤

a b

Figure 5: Two different maximal stable sets of H(P ) by applying the Maximal Stable-set
2 algorithm.

Example 3 The poset of Figure 5 is N-free of Type 2, where C = {a, b}. Applying the
Maximal Stable-set 2 algorithm we obtain two different maximal stable sets: C ′1 is the
framed vertex set and C ′2 is the surrounded vertex set, we remark that C ′2 verifies the
observation 7 (2) while C ′1 does not.

In the remainder of this paper, we suppose that C ′ verifies the observation 7 (2).
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3.2 Edge covering family of H(P )

In this section, we will present an algorithm to construct an edge covering family of H(P )
where P is an N-free of Type 2.
We denote by MaxPl = {bl

1, b
l
2, .., b

l
|MaxPl|}, Rl = {a1, a2, .., a|Rl|} , R′

pq,s = {c1, c2, .., c|R′pq,s|}
and

⋃
i∈Il

R′
il = {c′1, c′2, ..., c′ml

}

Theorem 8 If for every k ∈ L we have :

|MaxPk| ≥ |Rk|+
∑
i∈Ik

|R′
ik|. (1)

Then H(P ) has the dual König property and α(H(P )) = ρ(H(P )) = |MaxP |.

Proof. For every Pk, we consider the egde family: Ik = {[ai, bi] , i = 1, .., |Rk|} ∪
{
[
c′j−|Rk|, bj

]
, j = |Rk|+1, .., |Rk|+mk}∪{

[
c′mk

, bs

]
, s = mk + |Rk|+1, .., |MaxPk|}. The

union of all Ik, k ∈ L is an edge covering family of H(P ) with cardinal equals to |MaxP |
and as MaxP is a stable set of H(P ) then α(H(P )) = ρ(H(P )) = |MaxP |. ¤

We remark that by applying Maximal Stable-set 2 algorithm to P , we can obtain different
maximal stable sets of H(P ) and this depends on the choice of MDi

. In the next algorithm
we need to characterize the set C ′ as follows:
C ′ is determined such that for every subposet family Fk which contains subposets Pl

verifying (1), we determine MDi
different to Di but with the same size, and if x ∈ Di is

incomparable with all vertices of MaxPl then Mx will be too. For other subposet families,
MDi

does not contain a vertex of MaxPm, where Rm is not empty.

Edge-Cover Algorithm

INPUT: An N-free poset P of Type 2 and the maximal stable set C ′.

OUTPUT: An edge covering family I(H(P )).

Step 1 For every Rl, where Pl does not verify (1), we construct the edge family El with
|Rl| intervals as follows:

1.1 If |Rl| ≤ |MaxPl|: El = {[aj, b
l
j], j = 1, 2, ..., |Rl|}.
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1.2 Otherwise: El = {[aj, b
l
j], j = 1, 2, ..., |Max.Pl|} ∪ {[at, b|MaxPl|], t = |MaxPl|+

1, ..., |Rl|}.

Step 2 For every Pl, where Pl verifies (1), we construct the edge family Jl as follows:

Jl = {[ai, bi] , i = 1, .., |Rl|} ∪ {
[
c′j−|Rl|, bj

]
, j = |Rl| + 1, .., |Rl| + ml} ∪ {

[
c′ml

, bs

]
,

s = ml + |Rl|+ 1, .., |MaxPl|}. We obtain |MaxPl| intervals.

Step 3 In first, we determine all linked subposet families F1, F2, ..., Fm . Then, apply
this step to Fk = {Pl}l∈Sk

which is linked by R′
pq for k = 1 to k = m.

In this step, we use the vertices bl
t of MaxPl, Pl ∈ Fk, which are not used in step

1 or in the application of this step to Ft, where t < k ; otherwise, we use vertices
already used.
Let A′

s be the set As deleting all vertices comparable with MaxPm, where Pm veri-
fies (1), and F ′

k = {Pl}l∈S′kbe the family Fk deleting all subposets verifying (1) . For
every R′

pq,s we construct the edge family Is as follows :

3.1 If |A′
s| ≤ |R′

pq,s|:
Is = {[cj, b

l
t], j = 1, 2, ..., |A′

s| and l ∈ S ′k}. We obtain |A′
s| intervals.

3.2 If |A′
s| > |R′

pq,s|:
Is = {[cj, b

l
t], j = 1, 2, ..., |R′

pq,s| and l ∈ S ′′k ⊂ Sk} ∪ {[c1, b
l
t], l ∈ (S ′k − S ′′k )}. We

obtain |A′
s| intervals.

Step 4 It remains some minimal vertices cj which are not used in steps 1 and 3 such
that cj ∈ R′

pq,s and R′
pq does not link any subposet verifying (1). In this step, we

construct Jcj
the interval containing cj and bl

t a maximal vertex which is not already
used, otherwise, Jcj

is any interval containing cj.

Step 5 We take I(H(P )) the set of all intervals obtained from step 1 to step 4. End.

Theorem 9 The Edge-Cover algorithm applied to an N-free poset P of Type 2, yields an
edge-covering family of H(P ).

Proof. We can assert that every z of P which is a minimal element, comparable with a
vertex of Rm or comparable with a vertex of MaxPl, where Pl verifies (1) is covered by
I(H(P )).
Moreover, if z > x, where x ∈ A′

s, then z would be covered by the interval of I(H(P ))
which intersects A′

s.
In other cases, suppose that there exists z of P which is not covered by I(H(P )), we
distiguish two cases.
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Case 1. If z is a maximal of Pl and no interval obtained from step 3 or step 4 covers z,
then Pl necessarily would verify (1). This contradicts the construction of intervals
in these steps.

Case 2. Let J /∈ I(H(P )) containing z and x, where x ∈ A′
s and x ≮ z. Let I the interval

of I(H(P )) containing x. The only form of I and J is that they will have maximal
elements in MaxPl and two different minimal elements in R′

pq,s. z is not covered by
I, then for every couple (t, t′) of (I, J), where t ≤ x and t′ ≤ z, we will have t � t′.
We supose that a such couple exists.
If t and t′ are not in the same interval and A′

s ∪ {t, t′} − {x} is stable, then x can
be replaced by t and t′ in C ′ and this contradicts the construction of C ′. Otherwise,
we can reconstruct A′

s starting by z, in this case, R′
pq,s will be partitionned into at

least two subsets, and by applying the Edge-Cover algorithm, z will be covered by
the new family.

¤

As a consequence of Theorem 9, we have

Corollary 10 If in the Edge-Cover algorithm, for every vertex x of MaxP (resp. MinP ),
x is taken only once in the construction of I(H(P )), then P will have the dual König prop-
erty.

Proof. In this case, we will have |I(H(P ))| = |MaxP | ( resp. |MinP |), and as MaxP
and MinP are stable sets of H(P ), therefore α(H(P )) = ρ(H(P )) = |MaxP | ( resp.
α(H(P )) = ρ(H(P )) = |MinP |). ¤

Theorem 11 Let P be an N-free poset of type 2. Then, H(P ) has the dual König property.

Proof. The main idea of the proof is to use I(H(P )) obtained from the Edge-Cover
algorithm for constructing a stable set C(H) of H(P ) with the same size as I(H(P )).
Let B1 (resp. B2) be the union of all Rl ( resp. MaxPk), where Pl ( resp. Pk) does not
verify ( resp. verifies) (1).
From step 1 ( resp. step 2) of the Edge-Cover algorithm, B1 (resp. B2) is a stable set
with the cardinal equals to the cardinal of the union of all El (resp. Jl ). It becames clear
that B1 ∪B2 is stable set.
The union of all Is of step 3.1 can be partitioned into 2 subsets, the first denoted by D1,
which is the union of all Is, where R′

pq,s does not link subposets verifying (1), and the
second is denoted by D2.

Let B3,1 be the union of all R′
pq,s, where R′

pq does not link subposets verifying (1) and
|R′

pq,s| > |As|. B3,1 is a stable set with the cardinal equals to |D1| plus the cardinal of the
union of all Jcj

of step 4.
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We denote by B3,2 the union of all A′
s such that |A′

s| > |R′
pq,s| or |A′

s| ≤ |R′
pq,s|, where

R′
pq links subposets verifying (1). From Observation 7 (2), we deduce that there is no

common vertex x of As and As′ which is covered by two different intervals of I(H(P )) .
Consequently, |B3,2| is equal to |D2| plus the cardinal of the union of all Is of step 3.2.
Consider the following set:

C(H) = B1 ∪B2 ∪B3,1 ∪B3,2

Hence, it is not difficult to see that C(H) is a stable set with size |I(H(P ))|. ¤
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