Laboratoire d'Informatique Fondamentale, de Recherche Opérationnelle, de Combinatoire et d'Économétrie

Availaible on line at http://www.liforce.usthb.dz bulletin-liforce@usthb.dz Bulletin du Laboratoire 06 (2015) 63 - 76

On the dual König property of the order-interval hypergraph of two classes of N-free posets

Isma BOUCHEMAKH¹, Fatma KACI^{2*}

¹Faculty of Mathematics, Laboratory L'IFORCE, University of Sciences and Technology Houari Boumediene (USTHB), B.P. 32 El-Alia, Bab-Ezzouar, 16111 Algiers, Algeria.

² L'IFORCE Laboratory, Mohamed Khider University of Biskra, Department of Mathematics, 07000, Algeria.

Abstract: Let P be a finite N-free poset. We consider the hypergraph $\mathcal{H}(P)$ whose vertices are the elements of P and whose edges are the maximal intervals of P. We study the dual König property of $\mathcal{H}(P)$ in two subclasses of N-free class.

Keywords: Poset, interval, N-free, hypergraph, König property, dual König property

^{*}Corresponding author: kaci_fatma2000@yahoo.fr

1 Introduction

Let (P, \leq) be a finite partially ordered set (briefly poset P). A subset of X is called a chain (resp. antichain) if every two elements in X are comparable (resp. incomparable). The number of elements in a chain is the length of the chain. The height of an element $x \in P$, denoted by h(x), is the length of a longest chain in P having x as its maximum element. The height of a poset P, denoted h(P), is the length of a longest chain in P. The i-level or height-i-set of P, denoted by N_i , is the set of all elements of P which have height i.

Let p and q be two elements of P. We say q covers p and we denote $p \prec q$, if $p \prec v \leq q$ implies v = q. Furthermore we denote by MaxP (resp. MinP) the set of all maximal (resp. minimal) elements of P. A subset I of P of the form $I = \{v \in P, p \leq v \leq q\}$ (denoted [p,q]) is called an *interval*. It is maximal if p (resp. q) is a minimal (resp. maximal) element of P. Denote by $\mathcal{I}(P)$ the family of maximal intervals of P. The hypergraph $\mathcal{H}(P)=(P,\mathcal{I}(P))$ whose vertices are the elements of P and whose edges are the maximal intervals of P is said to be the order-interval hypergraph of P.

A subset A (resp. T) of P is called *independent* (resp. a *point cover* or *transversal set*) if every edge of \mathcal{H} contains at most one point of A (resp. at least one point of T). A subset \mathcal{M} (resp. \mathcal{R}) of \mathcal{I} is called a *matching* (resp. an *edge cover*) if every point of P is contained in at most one member of \mathcal{M} (resp. at least one member of member of \mathcal{R}). Let

```
\begin{array}{lcl} \alpha(\mathcal{H}) & = & \max\{|A| : A \text{ is independent}\}, \\ \tau(\mathcal{H})) & = & \min\{|T| : T \text{ is a point cover}\}, \\ \nu(\mathcal{H}) & = & \max\{|\mathcal{M}| : \mathcal{M} \text{ is a matching}\}, \\ \rho(\mathcal{H}) & = & \min\{|\mathcal{R}| : \mathcal{R} \text{ is an edge cover}\}. \end{array}
```

These numbers are called the *independence number*, the *point covering number*, the *matching number*, and the *edge covering number* of $\mathcal{H}(P)$, respectively. It is easy to see that $\nu(\mathcal{H}) \leq \tau(\mathcal{H})$ and $\alpha(\mathcal{H}) \leq \rho(\mathcal{H})$. We say that \mathcal{H} has the König property if $\nu(\mathcal{M}) = \tau(\mathcal{M})$ and dual König property if $\nu(\mathcal{H}^*) = \tau(\mathcal{H}^*)$, i.e., $\alpha(\mathcal{H}) = \rho(\mathcal{H})$ since $\alpha(\mathcal{H}) = \nu(\mathcal{H}^*)$ and $\rho(\mathcal{H}) = \tau(\mathcal{H}^*)$. This class of hypergraphs has been studied intensively in the past and we find interesting results from an algorithmic point of view as well as min-max relations [2]-[7] and [9].

Let $P_1 = (E_1, \leq_1)$ and $P_2 = (E_2, \leq_2)$ be two posets such that E_1 and E_2 are disjoint. The disjoint sum $P_1 + P_2$ of P_1 and P_2 is the poset defined on $E_1 \cup E_2$ such that $x \leq y$ in $P_1 + P_2$ if and only if $(x, y \in P_1 \text{ and } x \leq_1 y)$ or $(x, y \in P_2 \text{ and } x \leq_2 y)$. The linear sum $P_1 \oplus P_2$ of P_1 and P_2 is the poset defined on $P_1 \cup P_2$ such that $P_2 \cap P_2$ if and only if $P_1 \oplus P_2$ and $P_2 \cap P_2$ and $P_2 \cap P_2$ if and $P_2 \cap P_3$ and $P_4 \cap P_4$ and $P_5 \cap P_4$ and $P_6 \cap P_5$ and $P_6 \cap P_6$ and $P_6 \cap$

Let $A \subseteq MaxP_1$ and $B \subseteq MinP_2$ with A and B are not empty. The quasi-series composition of P_1 and P_2 denoted $P = (P_1, A) * (P_2, B)$ is the poset $P = (E_1 \cup E_2, \leq)$ such that: $x \leq y$ if $(x, y \in E_1 \text{ and } x \leq_1 y)$ or $(x, y \in E_2 \text{ and } x \leq_2 y)$ or $(x \in E_1, y \in E_2 \text{ and } x \leq_2 y)$ and there exist $\alpha \in A$, $\beta \in B$ such that $x \leq_1 \alpha$ and $\beta \leq_2 y$.

2 N-free poset

A poset P is said to be *series-parallel* poset, if it can be constructed from singletons P_0 (P_0 is the poset having only one element) using only two operations: disjoint sum and linear sum. It may be characterized by the fact that it does not contain the poset N as an induced subposet [14], [15]. P is called N-free if and only if its Hasse diagram does not contain four vertices v_1, v_2, v_3, v_4 , where $v_1 \prec v_2, v_2 \succ v_3$ and $v_3 \prec v_4$, and v_1 and v_4 , v_1 and v_3 , v_2 and v_4 , are incomparable. The class of N-free posets contains the class of series-parallel posets. Habib and Jegou in [12] defined the Quasi- Series-Parallel (QSP for short) class of posets, as the smallest class of posets that contains P_0 and closed under quasi-series composition and lineair sum. They proved that a poset is N-free if and only if it is QSP poset. The following theorem gives many other characterizations of N-free posets (see [11], [12] and [13]):

Theorem 1 The four following properties are equivalent:

- i) P is QSP.
- ii) P is an N-free poset.
- iii) P is a C.A.C. (Chain-Antichain Complete) order (i.e. every maximal chain intersects each maximal antichains).
- iv) The Hasse diagram of P is a line-digraph.
- v) For every two elements $p, q \in P$, if $N(p) \cap N(q) \neq \emptyset$ then N(p) = N(q), where N(p) denoted the set of all elements of P which cover p in P.

It is known that the order-interval hypergraph $\mathcal{H}(P)$ has the König and dual König properties for the class of series-parallel posets [5]. In [6], it is proved that $\mathcal{H}(P)$ has again the dual König property for the class of a posets that contains the series-parallel posets and whose members have comparability graphs which are distance-hereditary graphs or generalizations of them. If P is an N-free poset, the König property is not satisfied in

Figure 1: $\nu(\mathcal{H}(P)) = 1$ and $\tau(\mathcal{H}(P)) = 2$

general see [6]. The poset of Figure 1 is an example where $\nu(\mathcal{H}(P)) = 1$, $\tau(\mathcal{H}(P)) = 2$. In this paper, we consider two classes of N-free posets and prove that the dual König property of the order-interval hypergraph of these classes of posets are satisfied.

2.1 Blocks in an N-free poset

There is a useful representation of an N-free poset, namely the *block* (see [1]). If P is an N-free poset with levels $N_1..., N_r$, a block of P is maximal complete bipartite graph in the Hasse diagram of P. More precisely, a block of P is a pair (A_i, B_i) , where $A_i, B_i \subset P$ such that A_i is the set of all lower covers of every $x \in B_i$ and B_i is the set of all upper covers of every $y \in A_i$. By convention $(\emptyset, MinP)$ and $(MaxP, \emptyset)$ are blocks

In this paper, we say that (A_i, B_i) and (A_j, B_j) are adjacent if there exists at least one vertex of $A_i \cup B_i$ in the same interval in P with at least one vertex of $A_j \cup B_j$. For example, the blocks $(\{b\}, \{c, e\})$ and $(\{a, c\}, \{d\})$ of poset of Figure 2 are adjacent.

Figure 2: P is N-free with blocks $(\emptyset, \{a, b\}), (\{b\}, \{c, e\}), (\{a, c\}, \{d\})$ and $(\{d, e\}, \emptyset)$.

2.2 N-free poset of Type 1

Definition 1 Let P be a connected poset with levels $N_1, N_2, ... N_r$. We say that P is of $Type\ 1$ if there exists an integer n such that the induced subposet $P_{n,n+1}$ formed from the consecutive levels $N_n \cup N_{n+1}$ is of the form $N_n \oplus N_{n+1}$.

For the class of posets of Type 1, we give the following result:

Theorem 2 Let P be a poset of Type 1. Then $\mathcal{H}(P)$ has the dual König property and we have: $\alpha(\mathcal{H}(P)) = \rho(\mathcal{H}(P)) = Max\{|MaxP|, |MinP|\}.$

Proof. We denote by $MinP = \{a_1, a_2, ..., a_k\}$ and $MaxP = \{b_1, b_2, ..., b_l\}$. Consider the family of edges \mathcal{I} of $\mathcal{H}(P)$ such that $\mathcal{I} = \{[a_j, b_j], j = 1, ..., k\} \cup \{[a_k, b_j], j = k+1, ..., l\}$ if $k \leq l$ and $\mathcal{I} = \{[a_j, b_j], j = 1, ..., l\} \cup \{[a_j, b_l], j = l+1, ..., k\}$ if k > l. It is not difficult to

see that \mathcal{I} is an edge-covering family of $\mathcal{H}(P)$ of cardinal equal to $Max\{|MaxP|, |MinP|\}$. Hence, $\alpha(\mathcal{H}(P)) = \rho(\mathcal{H}(P)) = Max\{|MaxP|, |MinP|\}$

In particular, the order-interval hypergraph of the N-free poset of Type 1 has the dual König property.

3 N-free poset of Type 2

Definitions

- 1. Let P be a connected poset with levels $N_1, N_2, ...N_r$. We say that P is an N-free poset of $Type\ 2$, if there exists an integer n such that N_n is the first level where the induced subposet $P_{1,n}$ is disconnected of the form $P_{n,r} = P_1 + P_2 + ... + P_l$, and $\forall i \in L = \{1, ..., l\}, P_i$ is connected poset of Type 1.
- 2. We say that the subposet P_i is linked with the subposet P_j by a vertex z of N_1 , if we can obtain intervals of the form [z, x] and [z, y] for each $x \in MaxP_i$ and $y \in MaxP_j$, and we say z links P_i with P_j .
- 3. We say that P_i is linked with P_j by the subset R of N_1 , if for every element z of R, z links P_i with P_j .

Example 1 The poset P of Figure ?? is N-free of Type 2; it is easy to see that N_2 is the first level where $P_{2,3} = P_1 + P_2$ is disconnected poset with P_1 and P_2 are of Type 1. On the other hand, Q is an N-free poset but not of Type 2.

In order to prove the dual König property of $\mathcal{H}(P)$, where P is N-free of Type 2, let us introduce the following notations:

Notation

- 1. For every subposet P_k , we denote by R_k the subset of N_1 , where every element of R_k is comparable with all elements of $MaxP_k$, and R_k does not link P_k with any other poset P_s , $s \in L$. The set R_k can be empty.
- 2. For every subposet P_k , we denote by R'_{ik} , $i \in I_k = \{1, 2, ..., |N_1|\}$, the subset of N_1 which links P_k with the same family of poset $\{P_s\}_{s\in L}$. We can obtain $R'_{ik} = R'_{jl}$ for $i \neq j$ and $k \neq l$.

Observation 3 The family $\{R'_{ik}\}_{k\in L, i\in I_k}$ is pairwise disjoint.

To illustrate the classe of N-free posets of Type 2, see Figure 3.

Figure 3: Illustration of an N-free poset of Type 2

3.1 Maximal stable sets of $\mathcal{H}(P)$

In our poset, it is clear that for a linked subposet family $F_k = \{P_l\}_{l \in L}$, we can obtain blocks (A_i, B_i) in the level N_{n-j} , for $j \in \{0, 1, ..., n-1\}$, i.e. B_i intersects N_{n-j} , and every element x of A_i , x links a subfamily F_s of F_k , we say (A_i, B_i) links F_s . Such blocks must exist in N_n since P is N-free poset of Type 2.

We can note the following observation:

Observation 4 For every block (A_i, B_i) which links F_s , B_i has the following partition:

$$B_i = \bigcup_{t \in T} B_{i,t}$$

Where $\forall x \in B_{i,t}$, x is comparable with a vertex of $MinP_t$, where $P_t \in F_s$, and $|F_s| = |T|$

Let us now give two algorithms to find maximal stable sets of an N-free poset of Type 2, the second algorithm can be applied only after the first.

Maximal Stable-set 1 Algorithm

INPUT: An N-free poset P of Type 2. F_1, F_2, \ldots, F_m all linked subposet families of P.

OUTPUT: Maximal stable set of $\mathcal{H}(P)$.

- 1. For each k, from k = 1 to m.
- 2. For each j, from j = 0 to n 1, in N_{n-j} we determine $C_{k,j}$ by taking for every block (A_i, B_i) which links a subfamily of F_k , one vertex from each $B_{i,t}$ such that:
 - i) If there exists a family $\{B_{i,t}\}_i$ from block family which are adjacent pairwise, we take only one vertex from only one set $\{B_{i,t}\}_i$.
 - ii) We delete every vertex which is in the same interval with a vertex of $C_{k,t}$, t < j.
- 3. Put $C_k = \bigcup_{j=0}^{n-1} C_{k,j}$.
- 4. Output $C = (\bigcup_{k=1}^m C_k) \cup (\bigcup_{l \in L} R_l)$. End

Theorem 5 The set C is maximal stable set of $\mathcal{H}(P)$.

Proof. \mathcal{C} is a stable set by construction of every C_k . It remains the maximality of \mathcal{C} . We say that an interval I crosses a block (A_i, B_i) if I intersects B_i . Let us show that for every interval I of P, I contains one vertex of \mathcal{C} , and this means that for every $x \in P$, $\mathcal{C} \cup \{x\}$ will not be a stable set.

In the case where I does not cross any block, the minimal vertex of I will be in R_l . Now, In the case where I crosses a block (A_i, B_i) , let y be a commun vertex of B_i and I. If $y \in \mathcal{C}$, then I intersect \mathcal{C} . Otherwise, $y \notin \mathcal{C}$ that means that y is in the same interval J with an element y' of \mathcal{C} . Consequently, I and J will have minimal vertices in R'_{pq} and maximal vertices in $MaxP_l$, this gives $y' \in I$.

Example 2 The poset of Figure 4 is N-free of Type 2, where P_1 , P_2 and P_3 are the supbosets surrounded from left to right, we have: $R'_{11} = R'_{12} = \{a, b\}$, $R'_{21} = R'_{22} = R'_{13} = \{c\}$, $R'_{31} = R'_{23} = \{d\}$, $R'_{41} = R'_{33} = \{e\}$ and $R_3 = \{f\}$. The framed vertices form the maximal stable set \mathcal{C} of $\mathcal{H}(P)$ obtained by *Maximal Stable-set 1* algorithm.

We will need the following definition:

Figure 4: An N-free poset P of Type 2. Applying the *Maximal Stable-Set 1* algorithm on P; the framed vertices form a maximal stable set of $\mathcal{H}(P)$.

Definition 2 In $\mathcal{H}(P)$, for every vertex $x \in P$, the *stable adjacent* M_x to x is the set of all vertices y such that x and y are in the same interval of P, where M_x is stable. M_x can be equal to $\{x\}$. We say M_D is stable adjacent to the set D of P if it is stable adjacent to every vertex of D.

We can write $C = D_1 \cup D_2 \cup ... \cup D_m$ the stable set obtained from *Maximal Stable-set 1* algorithm, where D_i are subblocks of P. We determine a new maximal stable set C' from C as follows:

Maximal Stable-set 2 Algorithm

INPUT: An N-free poset P of Type 2, and maximal stable set $\mathcal{C} = D_1 \cup D_2 \cup ... \cup D_m$.

OUTPUT: A new maximal stable set C'.

- 1. $\mathcal{C}' := \mathcal{C}$.
- 2. For each i, from i = 1 to m.
- 2. We determine M_{D_i} the stable adjacent to D_i such that $C (\bigcup_{t=1}^{t=i} D_t) \cup (\bigcup_{t=1}^{t=i} M_{D_t})$ is stable.
- 3. We take $C' := C (\bigcup_{t=1}^{t=i} D_t) \cup (\bigcup_{t=1}^{t=i} M_{D_t}).$
- 4. Stop.

By construction of \mathcal{C}' , we deduce the following result:

Proposition 6 The set C' is a maximal stable set of $\mathcal{H}(P)$.

We denote by C'_k the set of all vertices obtained from every $x_i \in C_k$ using Maximal Stableset 2 algorithm.

As a consequence of the previous algorithms, we observe that:

Observation 7 Consider the subposet family F_k linked by R'_{pg} :

1. The set R'_{pq} has the following partition:

$$R'_{pq} = \bigcup_{s} R'_{pq,s}$$

where for every s, $R'_{va,s}$ is a stable adjacent to A_s a subset of C'_k .

2. It will be possible to obtain that the family $\{A_s\}_s$ is pairwise disjoint.

Proof. To prove the second observation, we suppose that x is a commun vertex of A_s and $A_{s'}$. Let I (resp. J) an interval containing x with minimal element $c_j \in R'_{pq,s}$ (resp. $c_{j'} \in R'_{p'q',s'}$). In I (resp. J) there exists a vertex z (resp. z') wich is incomparable with every vertex of $R'_{p'q',s'}$ (resp. $R'_{pq,s}$) (we take as an example, the vertex z (resp. z') such that $c_j \prec z$ (resp. $c_{j'} \prec z'$)). Otherwise, we will obtain $R'_{pq,s} = R'_{p'q',s'}$ since P is N-free. In this case, we can reconstruct A_s and $A_{s'}$ by starting by z and z' respectively to obtain two new disjoint sets.

Figure 5: Two different maximal stable sets of $\mathcal{H}(P)$ by applying the *Maximal Stable-set* 2 algorithm.

Example 3 The poset of Figure 5 is N-free of Type 2, where $C = \{a, b\}$. Applying the *Maximal Stable-set 2* algorithm we obtain two different maximal stable sets: C'_1 is the framed vertex set and C'_2 is the surrounded vertex set, we remark that C'_2 verifies the observation 7 (2) while C'_1 does not.

In the remainder of this paper, we suppose that C' verifies the observation 7 (2).

3.2 Edge covering family of $\mathcal{H}(P)$

In this section, we will present an algorithm to construct an edge covering family of $\mathcal{H}(P)$ where P is an N-free of Type 2.

We denote by $MaxP_l = \{b_1^l, b_2^l, ..., b_{|MaxP_l|}^l\}$, $R_l = \{a_1, a_2, ..., a_{|R_l|}\}$, $R'_{pq,s} = \{c_1, c_2, ..., c_{|R'_{pq,s}|}\}$ and $\bigcup_{i \in I_l} R'_{il} = \{c'_1, c'_2, ..., c'_{m_l}\}$

Theorem 8 If for every $k \in L$ we have :

$$|MaxP_k| \ge |R_k| + \sum_{i \in I_k} |R'_{ik}|. \tag{1}$$

Then $\mathcal{H}(P)$ has the dual König property and $\alpha(\mathcal{H}(P)) = \rho(\mathcal{H}(P)) = |MaxP|$.

Proof. For every P_k , we consider the egde family: $\mathcal{I}_k = \{[a_i, b_i], i = 1, ..., |R_k|\} \cup \{[c'_{j-|R_k|}, b_j], j = |R_k| + 1, ..., |R_k| + m_k\} \cup \{[c'_{m_k}, b_s], s = m_k + |R_k| + 1, ..., |MaxP_k|\}$. The union of all \mathcal{I}_k , $k \in L$ is an edge covering family of $\mathcal{H}(P)$ with cardinal equals to |MaxP| and as MaxP is a stable set of $\mathcal{H}(P)$ then $\alpha(\mathcal{H}(P)) = \rho(\mathcal{H}(P)) = |MaxP|$.

We remark that by applying $Maximal\ Stable\text{-set}\ 2$ algorithm to P, we can obtain different maximal stable sets of $\mathcal{H}(P)$ and this depends on the choice of M_{D_i} . In the next algorithm we need to characterize the set \mathcal{C}' as follows:

C' is determined such that for every subposet family F_k which contains subposets P_l verifying (1), we determine M_{D_i} different to D_i but with the same size, and if $x \in D_i$ is incomparable with all vertices of $MaxP_l$ then M_x will be too. For other subposet families, M_{D_i} does not contain a vertex of $MaxP_m$, where R_m is not empty.

Edge-Cover Algorithm

INPUT: An N-free poset P of Type 2 and the maximal stable set C'.

OUTPUT: An edge covering family $\mathcal{I}(\mathcal{H}(P))$.

Step 1 For every R_l , where P_l does not verify (1), we construct the edge family E_l with $|R_l|$ intervals as follows:

1.1 If
$$|R_l| \le |MaxP_l|$$
: $E_l = \{[a_j, b_j^l], j = 1, 2, ..., |R_l|\}$.

- **1.2** Otherwise: $E_l = \{[a_j, b_j^l], j = 1, 2, ..., |Max.P_l|\} \cup \{[a_t, b_{|MaxP_l|}], t = |MaxP_l| + 1, ..., |R_l|\}.$
- **Step 2** For every P_l , where P_l verifies (1), we construct the edge family J_l as follows: $J_l = \{[a_i, b_i], i = 1, ..., |R_l|\} \cup \{[c'_{j-|R_l|}, b_j], j = |R_l| + 1, ..., |R_l| + m_l\} \cup \{[c'_{m_l}, b_s], s = m_l + |R_l| + 1, ..., |MaxP_l|\}$. We obtain $|MaxP_l|$ intervals.
- **Step 3** In first, we determine all linked subposet families $F_1, F_2, ..., F_m$. Then, apply this step to $F_k = \{P_l\}_{l \in S_k}$ which is linked by R'_{pq} for k = 1 to k = m.

In this step, we use the vertices b_t^l of $MaxP_l$, $P_l \in F_k$, which are not used in step 1 or in the application of this step to F_t , where t < k; otherwise, we use vertices already used.

Let A'_s be the set A_s deleting all vertices comparable with $MaxP_m$, where P_m verifies (1), and $F'_k = \{P_l\}_{l \in S'_k}$ be the family F_k deleting all subposets verifying (1). For every $R'_{pg,s}$ we construct the edge family I_s as follows:

- **3.1** If $|A_s'| \leq |R_{pq,s}'|$: $I_s = \{[c_j, b_l^t], j = 1, 2, ..., |A_s'| \text{ and } l \in S_k'\}$. We obtain $|A_s'|$ intervals.
- **3.2** If $|A'_s| > |R'_{pq,s}|$: $I_s = \{[c_j, b^l_t], j = 1, 2, ..., |R'_{pq,s}| \text{ and } l \in S''_k \subset S_k\} \cup \{[c_1, b^l_t], l \in (S'_k - S''_k)\}$. We obtain $|A'_s|$ intervals.
- Step 4 It remains some minimal vertices c_j which are not used in steps 1 and 3 such that $c_j \in R'_{pq,s}$ and R'_{pq} does not link any subposet verifying (1). In this step, we construct J_{c_j} the interval containing c_j and b_t^l a maximal vertex which is not already used, otherwise, J_{c_j} is any interval containing c_j .
- **Step 5** We take $\mathcal{I}(\mathcal{H}(P))$ the set of all intervals obtained from step 1 to step 4. End.

Theorem 9 The Edge-Cover algorithm applied to an N-free poset P of Type 2, yields an edge-covering family of $\mathcal{H}(P)$.

Proof. We can assert that every z of P which is a minimal element, comparable with a vertex of R_m or comparable with a vertex of $MaxP_l$, where P_l verifies (1) is covered by $\mathcal{I}(\mathcal{H}(P))$.

Moreover, if z > x, where $x \in A'_s$, then z would be covered by the interval of $\mathcal{I}(\mathcal{H}(P))$ which intersects A'_s .

In other cases, suppose that there exists z of P which is not covered by $\mathcal{I}(\mathcal{H}(P))$, we distiguish two cases.

- Case 1. If z is a maximal of P_l and no interval obtained from step 3 or step 4 covers z, then P_l necessarily would verify (1). This contradicts the construction of intervals in these steps.
- Case 2. Let $J \notin \mathcal{I}(\mathcal{H}(P))$ containing z and x, where $x \in A'_s$ and $x \not< z$. Let I the interval of $\mathcal{I}(\mathcal{H}(P))$ containing x. The only form of I and J is that they will have maximal elements in $MaxP_l$ and two different minimal elements in $R'_{pq,s}$. z is not covered by I, then for every couple (t,t') of (I,J), where $t \le x$ and $t' \le z$, we will have $t \nleq t'$. We supose that a such couple exists.

If t and t' are not in the same interval and $A'_s \cup \{t, t'\} - \{x\}$ is stable, then x can be replaced by t and t' in \mathcal{C}' and this contradicts the construction of \mathcal{C}' . Otherwise, we can reconstruct A'_s starting by z, in this case, $R'_{pq,s}$ will be partitionned into at least two subsets, and by applying the Edge-Cover algorithm, z will be covered by the new family.

As a consequence of Theorem 9, we have

Corollary 10 If in the Edge-Cover algorithm, for every vertex x of MaxP (resp. MinP), x is taken only once in the construction of $\mathcal{I}(\mathcal{H}(P))$, then P will have the dual König property.

Proof. In this case, we will have $|\mathcal{I}(\mathcal{H}(P))| = |MaxP|$ (resp. |MinP|), and as MaxP and MinP are stable sets of $\mathcal{H}(P)$, therefore $\alpha(\mathcal{H}(P)) = \rho(\mathcal{H}(P)) = |MaxP|$ (resp. $\alpha(\mathcal{H}(P)) = \rho(\mathcal{H}(P)) = |MinP|$).

Theorem 11 Let P be an N-free poset of type 2. Then, $\mathcal{H}(P)$ has the dual König property.

Proof. The main idea of the proof is to use $\mathcal{I}(\mathcal{H}(P))$ obtained from the *Edge-Cover* algorithm for constructing a stable set $\mathcal{C}(\mathcal{H})$ of $\mathcal{H}(P)$ with the same size as $\mathcal{I}(\mathcal{H}(P))$. Let B_1 (resp. B_2) be the union of all R_l (resp. $MaxP_k$), where P_l (resp. P_k) does not verify (resp. verifies) (1).

From step 1 (resp. step 2) of the Edge-Cover algorithm, B_1 (resp. B_2) is a stable set with the cardinal equals to the cardinal of the union of all E_l (resp. J_l). It becames clear that $B_1 \cup B_2$ is stable set.

The union of all I_s of step 3.1 can be partitioned into 2 subsets, the first denoted by D_1 , which is the union of all I_s , where $R'_{pq,s}$ does not link subposets verifying (1), and the second is denoted by D_2 .

Let $B_{3,1}$ be the union of all $R'_{pq,s}$, where R'_{pq} does not link subposets verifying (1) and $|R'_{pq,s}| > |A_s|$. $B_{3,1}$ is a stable set with the cardinal equals to $|D_1|$ plus the cardinal of the union of all J_{c_j} of step 4.

We denote by $B_{3,2}$ the union of all A'_s such that $|A'_s| > |R'_{pq,s}|$ or $|A'_s| \le |R'_{pq,s}|$, where R'_{pq} links subposets verifying (1). From Observation 7 (2), we deduce that there is no common vertex x of A_s and $A_{s'}$ which is covered by two different intervals of $\mathcal{I}(\mathcal{H}(P))$. Consequently, $|B_{3,2}|$ is equal to $|D_2|$ plus the cardinal of the union of all I_s of step 3.2. Consider the following set:

$$\mathcal{C}(\mathcal{H}) = B_1 \cup B_2 \cup B_{3,1} \cup B_{3,2}$$

Hence, it is not difficult to see that $\mathcal{C}(\mathcal{H})$ is a stable set with size $|\mathcal{I}(\mathcal{H}(P))|$.

References

- [1] B.I. Bayoumi, M.H. El-Zahar and S.M. Khamis, Asymptotic enumeration of N-free partial orders, Order 6, 219-232 (1989).
- [2] I. Bouchemakh and K. Engel, Interval stability and interval covering property in finites posets, Order 9, 163-175 (1992)
- [3] I. Bouchemakh and K. Engel, The order-interval hypergraph of a finite poset and the König property, Discrete Math. 170, 51-61 (1997)
- [4] I. Bouchemakh, On the chromatic number of order-interval hypergraphs, Rostock. Math. Kolloq. 54, 81-89 (2000).
- [5] I. Bouchemakh, On the König and dual König properties of the order interval hypergraphs of series-parallel posets, Rostock. Math. Kolloq. 56, 3-8 (2001).
- [6] I. Bouchemakh, On the dual König property of the order-interval hypergraph of a new class of posets, Rostock. Math. Kolloq. 59, 19-27 (2005)
- [7] I. Bouchemakh and S. Ouatiki, On the domatic and the total domatic numbers of the 2-section graph of the order-interval hypergraph of the finite poset, Electronic Notes in Discrete Mathematics 22, 245-251 (2005)
- [8] M.H. EL-Zahar and R. Rival, Examples of jump-critical ordered sets, SIAM J. Alg. Disc. Math. 6, 713-720 (1985)
- [9] K. Engel, Interval packing and covering in the Boolean lattice, Comb. Probab. Comput. 5, 373-384(1996)
- [10] S. Felsner, J. Guestedt, M. Morvan and J.X Rampon, Constructing coloring for diagrams, Discrete Applied Mathematics 51, 85-93 (1994).
- [11] P.A. Grillet, Maximal chains and antichains, Fund. Math. 65, 157-167 (1969)

- [12] M. Habib, R. Jegou, N-free posets as generalisations of series-parallel posets, Discrete Applied Mathematics 12, 279-291 (1985).
- [13] C. Heuchenne, Sur une certaine correspondance entre graphes, Bull. Soc. Roy. Sci. Liege 33, 743-753 (1964)
- [14] D. P. Summer, Graphs indecomposable with respect to the X-join, Discrete Mathmatics 6, 281-298 (1973)
- [15] J. Valdes, R. E Tarjan and E. L Lawler, The recognition of series-parallel digraphs, Siam J. Computing 11, 298-31 (1982)