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Abstract : Given a positive integer n, how many quadrilaterals with or-
dered integer sides and perimeter n are there? Denoting the number of such
quadrilaterals by Q(n), the answer is given by:

Q(n) =

{
1

576
n (n+ 3) (2n+ 3)− (−1)n

192
n (n− 5)

}
·
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1 Introduction

In [1], Jordan, Walch, and Wisner characterized the number T (n) of incongruent triangles
with integer sides that have a fixed perimeter n by proving that T (2n + 12) = T (2n −
3) + n+ 3 for n ≥ 1. However, in [2], George E. Andrews noted that T (n) can be simply
handled by relating it to p3(n) and p2(n), the number of partitions of n into 3 and 2 parts,
respectively, and proved the following analytical formula:

T (n) =

{
n2

12

}
−
⌊n

4

⌋ ⌊n+ 2

4

⌋
,

where {x} is the nearest integer function and bxc the greatest integer function.

In the following, we will deal with the same problem, but by regarding the number Q(n)
of incongruent quadrilaterals with integer sides and perimeter n, which have the sequence
of their sides ordered, which we just call ordered integer quadrilaterals. For example, the
4-tuple (1, 1, 4, 4) of perimeter n = 10 is ordered; it can be rearranged to generate the
unordered 4-tuple (1, 4, 1, 4), so that the first forms a kite and the second a rectangle as
shown below:

4

4

1

1

4

4

11

2 Preliminary results

The partition of n ∈ N into k parts is a tuple π = (π1, . . . , πk) ∈ Nk, k ∈ N, such that:

n = π1 + · · ·+ πk, 1 ≤ π1 ≤ · · · ≤ πk,

where the nonnegative integers πi are called parts. We denote the number of partitions
of n into k parts by p(n, k).

Lemma 1 For n ≥ 4, we have:

Q (n) = p (n, 4)−
bn2 c∑
m=3

p (m, 3) ·
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Proof. At first sight, it should be noted that any partition of n into four parts generates
an ordered integer quadrilateral and vice versa, except the partitions for which the sum
of its three small parts does not exceed the largest part, due to the triangle inequality,
the such partitions verify:

n = a+ b+ c+ d, 1 ≤ a ≤ b ≤ c ≤ d and a+ b+ c ≤ d,

or
n− d = a+ b+ c, 1 ≤ a ≤ b ≤ c ≤ d ≤ n.

But
n− d ≤ d⇐⇒ n− d ≤ n

2
·

Hence

Q(n) = p (n, 4)−
bn2 c∑
m=3

p (m, 3) ·

If we consider, for example, the perimeter n = 10, then the number of partitions of n
is 9, which are: 7111, 6211, 5311, 4411, 5221, 4321, 3331, 4222 and 3322, they form a
quadrilateral only those we have underlined as shown below:

1
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1

2
2

2

2

2

2
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3

3

3

3

3

4

4 4
4

As we can check:

Q(10) = p (10, 4)−
5∑

m=3

p(m, 3) = 9− (1 + 1 + 2) = 5.

It should be noted that each quadrilaterals in the figure above represents an equivalence
class of quadrilaterals that all share the same partition. So, the number Q(n) counts
only the incongruent ordered integer quadrilaterals representing the equivalence classes
modulo the same partition.

Lemma 2 For n ≥ 3, we get:

n∑
m=3

p (m, 3) =
n (n− 2) (2n+ 7)

72
+

1

3

⌊n
3

⌋
+

1− (−1)n

16
·
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Proof. Let f(z) be the known generating function of p(m, 3) [3]:

f (z) =
z3

(1− z) (1− z2) (1− z3)
·

Then
n∑

m=0

p(m, 3) = [zn]

(
f (z)

1− z

)
·

From expanding
f (z)

1− z
in partial fractions, we obtain:

f (z)

1− z
=

1

36

z3 + 4z2 + z

(1− z)4
+

1

24

z2 + z

(1− z)3
− 1

12

z

(1− z)2
− 1

17

1

1− z
− 1

16

1

1 + z
+

1

9

1 + z

1 + z + z2
·

Since

1

1− z
=

∑
n≥0

zn,

1

1 + z
=

∑
n≥0

(−1)n zn,

z

(1− z)2
=

∑
n≥0

nzn,

z2 + z

(1− z)3
=

∑
n≥0

n2zn,

z3 + 4z2 + z

(1− z)4
=

∑
n≥0

n3zn,

and

1 + z

1 + z + z2
=

1− z2

1− z3
,

=
1

1− z3
− x2 1

1− z3
,

=
∑
n≥0

z3n −
∑
n≥0

z3n+2,

=
∑
n≥0

anz
n,

where

an =


1, n ≡ 0 (mod 3) ,
0, n ≡ 1 (mod 3) ,
−1, n ≡ 2 (mod 3) .

In a simplified way,

an = 1− n+ 3
⌊n

3

⌋
·

Summing all coefficients of zn, the result yields.
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Corollary 3 For n ≥ 6, we have:

bn3 c∑
m=3

p (n, 3) =
1

576

(
2n3 + 3n2 − 59n+ 30

)
+

(−1)n

192

(
n2 + n− 10

)
+

1

3

⌊n
6

⌋
+

1− (−1)b
n
2 c

16
·

Proof. While observing that ⌊n
2

⌋
=
n

2
− 1− (−1)n

4
,

we get, from Lemma 2,

1

72

⌊n
2

⌋⌊n− 4

2

⌋(
2
⌊n

2

⌋
+ 7
)

=
1

576

(
2n3 + 3n2 − 59n+ 30

)
+

(−1)n

192

(
n2 + n− 10

)
·

Hence, the result follows.

3 Main result

Theorem 4 For n ≥ 4, we have:

Q(n) =

{
1

576
n (n+ 3) (2n+ 3)− (−1)n

192
n (n− 5)

}
·

Proof. The generating function of p(n, 4) is as follows [3]:

g (z) =
z4

(1− z) (1− z2) (1− z3) (1− z4)
·

Via straightforward calculations, it can be proved that

p (n, 4) =
n3

144
+
n2

48
− (1− (−1)n)n

32
+

(−1)n

32
− 13

288
+
αn

72
,

where
αn ∈ {−17,−9,−8,−1, 0, 1, 8, 9, 17} ·

Then, from Lemma 1 and Corollary 3, we get:

Qn =
1

576
n (n+ 3) (2n+ 3)− (−1)n

192
n (n− 5) + βn,

where

βn = − 23

144
+

(−1)b
n
2 c

16
+

1

3

(n
6
−
⌊n

6

⌋)
+

(−1)n

12
− αn

72
,
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with

βn ∈
{
−3

8
,−1

4
,−11

72
,− 5

36
,−1

8
,− 1

36
,− 1

72
, 0,

5

72
,

7

72
,
2

9
,
4

9

}
·

Since Q(n) is an integer and |β (n)| < 1/2, we finally get:

Q(n) =

{
1

576
n (n+ 3) (2n+ 3)− (−1)n

192
n (n− 5)

}
·

By using a computer algebra package, Theorem 4 allows us to obtain Q(n) for large some
values of n. The following table is introduced to illustrate a few:

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Q(n)) 1 1 1 2 3 4 5 7 8 11 12 16 18 23 24 31 33

Remark 5 It is easy to see, from Theorem 4, that for n ≥ 1, we get:

Q(24n) = 48n3 + 6n2 + n.

4 Conclusion

The values Q(n) in the table above are sequence A062890 in the Online Encyclopedia of
Integer Sequences [8], but no explicit formula has been given for this sequence.
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