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Résumé : An independent broadcast on a graph G is a function
f:V —10,...,diam(G)} such that (i) f(v) < e(v) for every vertex
v € V(G), where diam(G) denotes the diameter of G and e(v) the eccentricity
of vertex v, and (i7) d(u,v) > max{f(u), f(v)} for every two distinct vertices
wand v with f(u)f(v) > 0. The broadcast independence number §,(G) of G is
then the maximum value of )~ _, f(v), taken over all independent broadcasts
on G. We prove that every circulant graph of the form C'(n;1,a),3 <a < |3,
admits an optimal 2-bounded independent broadcast, that is, an independent
broadcast f satisfying f(v) < 2 for every vertex v, except when n = 2a+ 1, or
n = 2a and a is even. We then determine the broadcast independence number
of various classes of such circulant graphs, and prove that, for most of these
classes, the equality £,(C'(n;1,a)) = a(C(n;1,a)) holds, where o(C(n;1,a))
denotes the independence number of C(n; 1, a).

Mots clés : Broadcast; Independent broadcast; Circulant graph.
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1 Introduction

All the graphs considered in this paper are undirected and simple. For such a graph G,
we denote by V(G) and E(G) its set of vertices and its set of edges, respectively. Let G
be a nontrivial connected graph, that is, a connected graph with at least one edge. The
distance from a vertex u to a vertex v in G, denoted dg(u,v), or simply d(u,v) when G
is clear from the context, is the length (number of edges) of a shortest path from u to v.
The eccentricity of a vertex v in G, denoted eg(v), is the maximum distance from v to
any other vertex of G. The minimum eccentricity in G is the radius of G, denoted rad(G),
while the maximum eccentricity in G is its diameter, denoted diam(G). Two vertices u
and v with dg(u,v) = diam(G) are said to be antipodal.

A function f: V(G) — {0,...,diam(G)} is a broadcast on G if f(v) < eg(v) for every
vertex v € V. For each vertex v, f(v) is the f-value of v, or the broadcast value of v if f is
clear from the context. Given such a broadcast f, an f-broadcast vertex is a vertex v for
which f(v) > 0. The set of all f-broadcast vertices is denoted V(). If v is a broadcast
vertex and u a vertex such that d(u,v) < f(u), then the vertex v f-dominates the vertex
u. The cost of a broadcast f on G is the value o(f) = ZverJr f(v).

A broadcast f is independent if no broadcast vertex f-dominates another broadcast ver-
tex, or, equivalently, if d(u,v) > max{f(u), f(v)} for every two distinct broadcast vertices
u and v. The maximum cost of an independent broadcast on G is the broadcast indepen-
dence number of G, denoted (,(G). An independent broadcast with cost 5,(G) is referred
to as a [,-broadcast.

A subset S of V(@) is an independent set if no two vertices in S are adjacent in G. The
independence number of G, denoted «(G), is then the maximum cardinality of an inde-
pendent set in G. Note that the characteristic function fg of every maximal independent
set S in a graph G is an independent broadcast and, therefore, a(G) < G,(G) for every
graph G.
Broadcast independence and broadcast domination were introduced by Erwin [9] in his
Ph.D. dissertation, using the terms cost independence and cost domination, respectively.
He also discussed several other types of broadcast parameters and gave relationships be-
tween them. Most of the corresponding results are published in [8, 10]. Since then, several
papers have been devoted to the study of these broadcast parameters, but there were not
so many results concerning the broadcast independence number [6, 8], until recently (see
(1,2, 7,3, 4, 5]). In particular, Bessy and Rautenbach discussed the algorithmic com-
plexity of broadcast independence in [3] and the links between girth, minimum degree,
independence number and broadcast independence number in [4, 5].
In this paper, we study the broadcast independence number of circulant graphs. Recall
that for every integer n > 3, and every sequence of integers ay,...,ax, k > 1, satisfying
1<a <+ <a; < L%J, the circulant graph G = C(n;ay,...,a) is the graph defined
by

V(G) = {vg,v1,..., 0,1} and E(G) = {0vita, | aj € {a1,..., a1}}

(subscripts are taken modulo n). Note that, in particular, C'(n;aq,...,a;) is 2k-regular
and vertex-transitive (see [12] for a survey on properties of undirected circulant graphs).

Our paper is organized as follows. In Section 2, we give some preliminary results and de-
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termine the broadcast independence number of circulant graphs of the form C'(2a; 1, a) and
C(3a;1,a). In Section 3 we prove that almost all circulant graphs of the form C(n;1,a)
admit an optimal independent broadcast all whose broadcast values are at most 2. Gen-
eral upper and lower bounds on the cost of independent broadcasts on circulant graphs
of the form C(n;1,a) are proposed in Section 4. We then determine the value of the
broadcast independence number of various classes of circulant graphs in Section 5. We
finally propose a few concluding remarks in Section 6.

2 Preliminary results

Let ©(G) denote the maximum cardinality of a set of pairwise antipodal vertices in G.
Dunbar et al. proved the following lower bound on the broadcast independence number
of a graph.

Proposition 1 (Dunbar et al. [8]) For every graph G,
Bo(G) > u(G)(diam(G) — 1) > 2(diam(G) — 1).

Moreover, this bound is sharp.

In addition to grid graphs G,,,, = P,, O P, with m € {2, 3,4} and m < n [6] and paths [9],
the relation (,(G) = 2(diam(G) — 1) also holds for cycles of order at least 4 [7]. It can
also be observed that the value 2(diam(G) — 1) is an upper bound on the cost of some
independent broadcasts.

In order to compare the values of the independence number and of the broadcast inde-
pendence number of the graphs we will consider in Section 5, the following observation
will be useful.

Observation 2.1 For every graph G, (y(G) > a(G). Moreover, B,(G) = a(G) if and
only if there exists a [By-broadcast f on G such that f(v) = 1 for every broadcast vertex
ve Vs .

f

Indeed, the fact that the characteristic function fs of every maximal independent set S
in a graph G is an independent broadcast on G, as noticed in the previous section, gives
the inequality and the necessity of the condition for the second part of the statement,
while the sufficiency follows from the fact that Ver is always an independent set. Before
considering general cases in the next sections, we will determine in the following the
independence number and the broadcast independence number of circulant graphs of the
form C(n;1,a) for two particular cases, namely when n = 2a or n = 3a.
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Vg Va1 Va+2 Va+3 Va+k Va+k+1 V2q—3 V2q—2 V2q—1

Figure 1: The circulant graph C(2a;1,a).

Lemma 2 For every integer a > 2,

a, if a is odd,

a—1, ifa is even.

a(C(2a;1,a)) = {

Proof. Since C(4;1,2) = K, and «o(Ky) = 1, we can assume a > 3. If a is odd, then
the set S = {v;] i is even} is an independent set of C'(2a;1,a), and thus a(C(2a;1,a)) >
|S| = a. Since Cy, is a subgraph of C'(2a; 1,a), we get a(C(2a;1,a) < a(Cy,) = a and the
result follows. If a is even, then the set S" = {v;| 0 <i<a—2, iiseven}U{v;| a+1<
i < 2a — 3, iisodd} is an independent set of C'(2a;1,a), and thus a(C(2a;1,a)) >
|S’| = a — 1. Note that the odd cycle C' = vyvy . .. v,v0, with a(C) = §, is a subgraph of
C(2a;1,a). Therefore, for every independent set I of C'(2a;1,a), there are at least two
consecutive vertices v;, v with v;,v,1 ¢ I. This implies a(C(2a;1,a)) < 221, which
gives a(C'(2a;1,a)) =a — 1. O

Theorem 3 For every integer a > 2,

a(C(2a;1,a)) = a, if a is odd,
Bp(C(2a;1,a)) =< a(C(2a;1,a)) =a—1, ifa= 2P for some integer p > 1,
a otherwise.

Proof. The case a = 2 directly follows from Lemma 2. We can thus assume a > 3.
The graph C(2a;1,a) can be viewed as the Cartesian product graph P, O K, with two
additional edges (see Figure 1, where the two additional edges are drawn as dashed lines).
Recall that «(C'(2a; 1, a)) is given by Lemma 2, and let f be any independent /3,-broadcast
on C(2a;1,a). If [V,"| =1, then

a+1

o(f) = diam(C(2a;1,a)) = { J < a(C(2a;1,a)),
which gives o(f) < 8,(C(2a;1, a)) by Observation 2.1, a contradiction. Therefore, |Vf+\ > 2.

Since each vertex v € VfJr f-dominates exactly 4f(v) vertices, each f-broadcast vertex
v is f-dominated exactly once, each non-broadcast vertex is f-dominated at most three
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times, and at most |Vf+| vertices can be dominated three times (namely the vertices v;i,
when v; € V), we get

AF(VE) BV + VI + 2 (20 — 2|V/T]) = 4a, (2.1)
and thus
B(C(2a;1,0)) = o(f) = Y flv) = f(V}) <a. (2:2)
UEVer

We now consider the three cases of the statement of the theorem separately.

1. ais odd.
Let g be the mapping from V(C'(2a;1,a)) to {0, 1} defined by g(v;) = 1 if and only
if ¢ is even. Since a is odd, g is an independent broadcast on C(2a;1,a). This
gives 5,(C(2a;1,a)) > o(g) = a and, since g satisfies (2.2), 5,(C(2a;1,a)) = a. By
Observation 2.1, we then get 5,(C(2a;1,a)) = a(C(2a;1,a)) = a.

2. a = 2P for some integer p > 1.
By Observation 2.1 and Lemma 2, we have 5,(C'(2a;1,a)) > a(C(2a;1,a)) = a—1,
since a is even. Let g be any independent fy-broadcast on C(2a;1,a).

Suppose first that not all g-broadcast vertices have the same g-value, and let v; and
vj be any two vertices with g(v;) < g(v;) such that the distance d(v;, v;) is minimum
among all g-broadcast vertices with distinct g-values. Without loss of generality, we
can assume ¢ < j. We consider two subcases, depending on whether v; and v; are
on the same side of the “ladder” (refer to Figure 1) or not.

(a) j —i>a (v; and v; are not on the same side of the ladder).
Since no g-broadcast vertex lies on a shortest path linking v; and v;, vj4, is
not g-dominated by v; and is thus g-dominated at most twice. Therefore, the
inequality (2.1) becomes

4g(V,H) <3(IV,H = 1) + [V, +2 (20 = 2|V, + 1) = da — 1,

which gives

B(CCa10) =alg) = 3 g(v) = g(V;) < f‘" - 1J Y

4
ve V;r

(b) 7 —i<a (v; and v; are on the same side of the ladder).
If there exists a g-broadcast vertex v, with i +a < k < j + a then, since no
g-broadcast vertex lies on a shortest path linking v; and v;, we necessarily have
Uk € {Vitat1, Vjta—1}. By considering either v; and vy, or v; and vy, instead of
v; and v;, we are back to the previous subcase.
If no such vertex exists, then both v, and v;, are g-dominated at most twice
and thus, using the same argument as before, we get 5,(C'(2a;1,a)) < a — 1.
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We thus get 5,(C'(2a;1,a)) = a—1 in both subcases, as required. Suppose now that
g(v) = k for every vertex v € V" and let v; be any such vertex.

If vitarr ¢ V,7, then the vertex vy, is g-dominated at most twice and thus, as
previously, we get 5,(C(2a;1,a)) = o(g9) = a — 1. The same conclusion arises if
Vi—a—k ¢ V;_-

Suppose finally viiair, vica—r € V" for every vertex v; € V,© and assume, without
loss of generality, vy € Vg+. We thus have (recall that indices are taken modulo 2a)

+_
‘/g - {U07 Va+k; V2ky Va+3k; - - ‘}7
= {/007 U2k, Vaky - -+ y Vatks Vat3k, Va+5ks - - }
Hence, every g-broadcast vertex v; with 0 < ¢ < a satisfies i = 2kt for some ¢,
0 <t < g5 Since v_q_p = V4 is a g-broadcast vertex and 0 < a — k < a, we get

a —k = 2kt', for some t', 0 < ¢’ < 5. This gives a = (2t' + 1)k, contradicting the
assumption a = 2P, so that this last case cannot appear.

3. a is even and a # 2P for every p > 0.
This implies a = (2¢+ 1)2* for some positive integers k and £. Let g be the mapping
from V(C(2a;1,a)) to {0,2*} defined by g(v;) = 2* if and only if i =0 (mod 2~1),
which gives V¥ = {v,or41] 0 < p < 20}

For any two g-broadcast vertices v; = vpors1 and v; = vgor1, 0 < p < g < 24, we
have

d(vi, Uj) = Iﬂln{(q _ p)2k+17 |(p i q)2k+1 + CL| + 17 (p o q)2k+1 + 2@}7
which gives, since a = (2¢ + 1)2*,

d(vi,v;) = min{(q — p)2°, 20— g+ O) + 12" + 1, (p — g+ 20+ 12"} > 2" + 1.

Therefore, g is an independent broadcast on C'(2a; 1, a), with cost o(g) = 2F (2,311) =a,
which gives 5,(C(2a;1,a)) > o(g) = a and thus, since g satisfies (2.2), 5,(C(2a;1,a)) = a.

This completes the proof. 0
We finally consider the case n = 3a.

Theorem 4 For every integer a > 3,

Bp(C(3a;1,a)) = a(C(3a;1,a)) = a.

Proof. Let f be an independent f,-broadcast on C'(3a;1,a)). For each vertex v; € Vf+,
we let

C} = {via < 7/Ui+f(’0i)*]-} U {viJra: s 7/Ui+0«+f(’0i)*1} U {viJrQa: s 7’Ui+2a+f(vi)*1}'
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We clearly have [C%] = 3f(v;) for every v; € V', and O N C’}, = () for every two distinct
vertices v; and vy in V7, since otherwise we would have d(v;,vy) < max{f(v;), f(vi)},
contradicting the fact that f is an independent broadcast. This gives

= > |C| < 3a,

UiEVf+
and thus 3
By(C(3a; 1, a)) =Y fw Vi) < 3“ —a.
UEVJr

Consider now the mapping f from V(C(3a;1,a)) to {0,1} defined as follows, depending
on the parity of a.

1. If a is odd, then f(v;) =1 if and only if 7 is even and ¢ < 2a.

2. If a is even, then f(v;) = 1 if and only if (¢ mod a+ 1) is odd and i < 2a.

In both cases, f is clearly an independent broadcast on V(C(3a;1,a) with a( ) = a.
This implies £,(C'(3a;1,a)) > a and thus, thanks to Observation 2.1, 5,(C(3a;1,a)) =
a(C(3a;1,a)) = a. O
3 2-bounded optimal independent broadcasts

Recall that we denote by vy, vy, ..., v,_1 the vertices of C'(n;1,a) and that subscripts are

always considered modulo n. We will say that an edge v;v; is a k-edge for some integer

kE,1<k< L%J, if j =14k ori = j+ k. Therefore, every edge in C'(n;1,a) is either a

1-edge or an a-edge.

Let f be an independent broadcast on C'(n;1,a). For every f-broadcast vertex v; € Vf+,
we denote by Dy(v;) the set of vertices that are f-dominated by v;, that is

Dy(os) = UL oy i = (o) = Ka—k < j < i = (f(vs) = K)a+ k}
O Uty (o i+ (o) = R)a— k < < it (f(vg) = K)a+ K}

Figure 2 illustrates this definition on a circulant graph of the form C(n; 1,6) (with n > 26)
for a vertex v; with f(v;) = 2.

Let us say that an independent broadcast f is £-bounded, for some integer ¢ > 1, if f(v) < ¢
for every vertex v. In particular, a 1-bounded independent broadcast is the characteristic
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(%

Figure 2: The set D¢(v;) (black vertex and grey vertices), with a = 6 and f(v;) = 2.

function of an independent set. This implies that such a broadcast always exists for every
graph, and thus that every graph admits an ¢-bounded independent broadcast for every
(> 1.

Our goal in this section is to prove that almost all circulant graphs of the form C(n; 1, a),
2 < a < %, admit a 2-bounded optimal independent broadcast. Considering the (-
broadcasts used in the proofs of Theorems 3 and 4, we already have the following result.

Proposition 5 For every integer a > 2, the following holds.

1. C(2a;1,a) admits a 2-bounded By-broadcast if a is odd or a = 2P for some p > 1.

2. C(3a;1,a) admits a 2-bounded By-broadcast.

We will now prove that every circulant graph of the form C'(n;1,a), a > 3 and n > 2a+ 2,
admits a 2-bounded S,-broadcast. We first consider the case when 2a + 2 < n < 3a.

Lemma 6 If n, a and r are three integers such that n = 2a +r, 3 < a < \_%J and
2 <r <a, then C(n;1,a) admits a 2-bounded [3,-broadcast.

Proof. Note that it is enough to prove that for every independent broadcast f on
C(n;1,a), there exists an independent broadcast g on C(n;1,a) such that o(g) > o(f)
and g(v) < 2 for every vertex v € V.

Let f be any independent broadcast on C(n; 1, a), and g be the mapping from V(C'(n; 1,a))
to {0, 1,2} defined as follows (the construction of the mapping ¢ is illustrated in Figure 3,
where the value of f(v;) is indicated in brackets; not all a-edges are drawn, but the missing
a-edges are parallel to the drawn ones; note also that v;_, = v;144,, and thus v,, and
v;_q are separated by r — 1 vertices).

1. If v; is an f-broadcast vertex such that 2 < f(v;) < r, then we let
0 if j =1,
1 ifj=i—a,
g9(vj) = . o A
ort—1<j7<i+p+1andj—i+1iseven,
ori+a<j<i4+a+pandj—i—aiseven,
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1 (3.4) 1
..... O O O O O O O O ) oy
(%
1 1
----- -O—O—0—0—0—0—0—0—0—0—0
Vita Vi—q

56
O~ O
O\ ©
Q\ O
o \o
O &
o /o
o/ ©
O O
0
O~ O
®

Q
O

1 6) 1 1 1
..... O G O O M) G O
v;
W
----- O O O O @ O O @; O O
Vita Vi—q

1 G 1 1
----- -O0—O0—0 O—O0—O—0—O0—Q—0
(%
1 1 1
----- -O—F—O0—O0—0F—O0—0——0—0
Vita Vi—a

(e) Item 3: f(v;) =5, a =12 and r = 3 (so that d =1 and n = 27)

Figure 3: Construction of the mapping ¢ in the proof of Lemma 6.
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where p = f(v;) — 3 if f(v;) is odd, and p = f(v;) — 4 if f(v;) is even (see Fig-
ure 3(a,b)).

2. If v; is an f-broadcast vertex such that E_‘ > f(v;) > r+1 and r is even, then we

let
0 if j =1,

glvj))=¢ 1 ifi—-1<j<i+p+1andj—i+1iseven,
orit+a<j<i4+a+r+pandj—i—aiseven,

where p = f(v;) =3 if f(v;) is odd, and p = f(v;) —4 if f(v;) is even (see Figure 3(c)).
3. If v; is an f-broadcast vertex such that f(v;) > r + 1 and r is odd, then we let
(0 ifj=1i,

d+2

1 ifi—2<j<i+ L%Jr—l—(d mod 2)

g(vj) = and (j —i+2) mod (r+2) is odd,

d+2
0ri+a§j§i+a+[% r+1—(d mod 2)

\ and (j —i—a+3) mod (r+2) is odd,
where d = f(v;) — (r + 1) (see Figure 3(d,e)).

4. For every other vertex vg, we let g(vx) = f(vk).

Note that, in particular, g(v;) = f(v;) for every f-broadcast vertex v; with f(v;) < 2.
Moreover, all vertices set to 1 in the above items are distinct from v; and at distance not
greater than f(v;) from v;, which means that their f-value was 0.

We now prove that ¢ is an independent broadcast on C'(n;1,a). For that, we first prove
the following claim.

Claim 1 For every vertex v; whose g-value is set to 1 in Item 1, 2 or 3 above, we have
d(vi,v5) < f(vi) — 2.

Proof. In Item 1, every vertex whose g-value is set to 1 is at distance at most p + 1 <
f(v;) = 2 from v;. In Item 2, every vertex whose g-value is set to 1 is at distance at most
max{p+ 1,7 — 1} < f(v;) — 2 from v;.

Consider now a vertex v; whose g-value is set to 1 in Item 3 and whose distance to v; is

maximal (see Figure 3(d,e)), and suppose first that i —2 < j <i+ %3] r+ (d mod 2).

Since r > 3 and r is odd, v; is at distance d(v;,v;) = 2 [42] + |£] — 1 from v; (going
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to Vig| 452 |, using (2 | %2 |) a-edges, and then back to v; using (|| — 1) 1-edges). Since

d= f(v;) —r—1and r > 3, this gives

r+1
2

Avy) < ) —r 41400 1= fo) = TE L < ) 2.

Suppose finally that i +a < j < i+a+ [difw r+1—(d mod 2). In that case, v; is

T

at distance d(v;,v;) = 1+ 2(|42] — 1)+ |£] — 1 from v; (going to Vitat[ 227 using

(1+2(|%2| — 1)) a-edges, and then back to v; using (|5 ] — 1) 1-edges). As before, since
d= f(v;) —r—1and r > 3, this gives

d(vi,vj)g1+2q¥J_Qg;l_szMJ_l)“;l

§2(f(vi)—7“—|—1)+r—1_2:]0(%)_7“—1_2

2

S f(vz> _27

which concludes the proof of the claim. 0

Thanks to this claim, and since f was an independent broadcast on C(n;1,a), no g-
broadcast vertex v; with g(v;) = f(v;) € {1,2} g-dominates a vertex whose g-value has
been set to 1. Therefore, in order to prove that ¢ is indeed an independent broadcast on
C(n;1,a), it remains to prove that the set of vertices whose g-value has been set to 1 is
an independent set. Moreover, thanks to Claim 1, Items 1, 2 and 3 can be considered
separately. This is readily the case for vertices whose g-value has been set to 1 in Item
1 and 2. In Item 3, thanks to the parity of their subscript, no two such vertices are
linked by a 1-edge. Moreover, any two such vertices cannot be linked by an a-edge since
(j—i+2)—(j—i—a+3)=a—1.

In order to finish the proof, we only need to show that we have o(g) > o(f). Indeed,
in Item 1, the number of vertices set to 1 is ny = 1 + 1%4 + 1%2 = p + 4, which gives
ny = f(v) if f(v;) is even, or ny = f(v;) +1 > f(v;) if f(v;) is odd.

— pt4

In Ttem 2, the number of vertices set to 1 is ny = 5~ + 1%2 + 35 = w, which gives

ng = 210(1;)% > f(v;) (recall that r > 2) if f(v;) is even, or ny = W > f(v)if f(v;)
is odd.

Finally consider Item 3. Observe that, since r+2 is odd, in every sequence of r + 2 consecu-
tive vertices lying between v;_5 and v, 2] or between v; ., and v
2

r+1
2

r+(d mod 2)’ i+a+’r%—‘7‘+1—(d mod 2)’
vertices are set to 1. Therefore, the number of vertices set to 1 in Item 3 is

s [26:12) (d—gzwgﬂ ' [2(7“112) (d;%”ﬂ |

exactly
either
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f 5,6
9 1 1 1 1 1 1 1

(a) Item 1: f(v;) € {5,6} and a =7 (so that p = 2)

(b) Item 2: f(v;) =7 and a =5 (so that d = 1)

N NN D
9 1 1 1 1 1 1 1 1 1

(c) Item 3: f(v;) =7 and a =4 (so that d = 2)

Figure 4: Construction of the mapping ¢ in the proof of Lemma 7.

if d is even, or

w= [y ()] [ ()

if d is odd. In both cases, we get

r+1 (dr+1)(r+1) dr(r+1)
> d+ 2 D) = 1 1+ —.
"= 2(7"+2)(( T2r+d)=r+ls 2r+2) T T 2012
Since r > 3, we have r(r + 1) > 2(r + 2), and thus
ns ZT+1+d:f(UZ)
We thus have o(g) > o(f), as required. This completes the proof. O

We now consider the case n > 3a.

Lemma 7 Ifn and a are two integers such that 3 < a < \_%J and n > 3a, then C(n;1,a)
admits a 2-bounded [By-broadcast.

Proof. Again, it is enough to prove that for every independent broadcast f on C'(n;1,a),
there exists an independent broadcast g on C(n; 1, a) such that o(g) > o(f) and g(v) <
for every vertex v € V'
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Let f be any independent broadcast on C(n; 1, a), and g be the mapping from V (C'(n; 1,a))
to {0, 1,2} defined as follows (the construction of the mapping ¢ is illustrated in Figure 4,
not all a-edges being drawn).

1. If v; is an f-broadcast vertex such that 2 < f(v;) < a, then we let
0 ifj =i,
1 ifi—1<j<i+p+1landj—i+1iseven,
ori—a<j<i—a+pandj—1i+aiseven,

ori+a<j<i+a+pandj—i—aiseven,
where p = f(v;)—=31if f(v;) isodd, and p = f(v;) —4 if f(v;) is even (see Figure 4(a)).
2. If v; is an f-broadcast vertex such that f(v;) > a+ 1 and a is odd, then we let
0 if j =14,
9(v;) = L . o
1 ifi—a<j<i+(1+d)aandj—1i+aiseven,
where d = f(v;) — (a + 1) (see Figure 4(b)).
3. If v; is an f-broadcast vertex such that f(v;) > a + 1 and a is even, then we let
o) 0 ifj=i
vj) =
I 1 ifi—a—1<j<i+(2+daand (j—i+a+1) mod (a+1)is odd,
where d = f(v;) — (a + 1) (see Figure 4(c)).

4. For every other vertex vg, we let g(vx) = f(vg).

Note that, as in the proof of the previous lemma, g(v;) = f(v;) for every f-broadcast
vertex v; with f(v;) < 2. Moreover, all vertices set to 1 in the above items are also
distinct from v; and at distance not greater than f(v;) from v;, which means that their
f-value was 0.

We now prove that ¢ is an independent broadcast on C'(n;1,a). For that, we first prove
the following claim.

Claim 2 For every vertex v; whose g-value is set to 1 in Item 1, 2 or 8 above, we have

d(vi,v;) < f(v;) — 2.

Proof. InItem 1, every vertex whose g-value is set to 1 is at distance at most p + 1 < f(v;) — 2
from v;.



On the Broadcast Independence Number of Circulant Graphs 27

Among the vertices whose g-value might be set to 1 in Item 2, the vertex whose distance
to v; is maximal is, since a is odd, the vertex v; with j = da + “TH, which gives
a+1

d(’l)l',?)j) =d + 9 == f(?)z)

a+1
2

< fluvi) =2
(recall that, in that case, we have a > 3).
Similarly, among the vertices whose g-value might be set to 1 in Item 3, the vertex whose

distance to v; is maximal is, since a is even, the vertex v; with j = (d + 1)a + §, which
gives

a a
d(viavj>:d+1+§:f(vi)_§ < flv) =2
(recall that, in that case, we have a > 4).
This concludes the proof of the claim. 0

Thanks to this claim, and since f was an independent broadcast on C(n;1,a), no g-
broadcast vertex v; with g(v;) = f(v;) € {1,2} g-dominates a vertex whose g-value has
been set to 1. Therefore, in order to prove that ¢ is indeed an independent broadcast on
C(n;1,a), it remains to prove that the set of vertices whose g-value has been set to 1 is
an independent set. Moreover, thanks to Claim 2, Items 1, 2 and 3 can be considered
separately. This is readily the case for vertices whose g-value has been set to 1 in Item 1.
It follows from the parity of their subscript in Item 2 (neither a l-edge nor an a-edge,
since a is odd, can link any two such vertices), and from the value modulo (a+ 1) of their
subscript in Items 3 (which, again, implies that neither a 1-edge nor an a-edge, since a is
even, can link any two such vertices).

In order to finish the proof, we only need to show that we have o(g) > o(f). Indeed,
— pt4 3p+8

in Item 1, the number of vertices set to 1 is ny = 5~ + 1%2 + 1%2 = &=, which gives

ny = W > f(v;) if f(v;) is even (in that case, f(v;) > 4, and equality holds only

when f(v;) =4), or ny = Lg)_l > f(v;) if f(v;) is odd (in that case, f(v;) > 3).

In Item 2, the number of vertices set to 1 is ny = [(Hdg‘”l-‘ = P‘”;rd“] If d =0, since

a is odd, we get ny, = {%W =a+ 1= f(v;). Otherwise, that is, if d > 1, since a > 3,
we get ng = {ww Za+%+“2—d >a+d+ 1= f(v).

Finally, in Item 3, note that, for every sequence of a + 1 consecutive vertices, § of them
are set to 1. Therefore, the total number of vertices set to 1 is

3a? + da’® + 2a N da? N a?
=a )
2(a+1) 2(a+1) 2(a+1)

ng = [ﬁ ((d+3)a+2)—‘ >

Since a > 4, we have Q(S_QH) > 1, which gives ng > a+d+ 1= f(v;).

We thus have o(g) > o(f), as required. This completes the proof. O
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From Proposition 5 and Lemmas 6 and 7, we directly get the following theorem.

Theorem 8 FEwvery circulant graph of the form C(n;1,a), 3 < a < L%J, admits a 2-
bounded [y-broadcast if none of the following conditions is satisfied: (i) n = 2a and a is

even, or (ii) n = 2a + 1.

The following example will show that when a = 2 or n = 2a + 1, not all circulant
graphs of the form C(n;1,a) admit a 2-bounded [,-broadcast. Consider the circulant
graph C(21;1,2), and let f be the mapping from V(C(21;1,2)) to {0,3} defined by
f(vo) = f(v7) = f(via) = 3 and f(v;) = 0 otherwise. Since 2 is even, f is clearly an
independent broadcast on C(21;1,2), with cost o(f) = 9, and thus 9 < 3,(C(21;1,2)).
Now, suppose that there exists a 2-bounded f-broadcast g on C'(21;1,2). If [VF| < 4,
we immediately get o(g) < 8, since g is 2-bounded. Suppose now |V,"| > 4. Each vertex
v; € V;r dominates at most three vertices among {v;, v;11,v;42} (subscripts are taken
modulo 21), and none of these vertices is dominated more than once. Therefore, since g
is an independent broadcast, we get

D (142g(w)) = [V,F | +29(V,") <21,

UrL'GVQJr
which gives (recall that [V,"| > 4)

21 — |VF
o) = g(v;) < 2Vl < g

In both cases, we get a contradiction to the optimality of g. Finally, since C'(21;1,10)
is isomorphic to C(21;1,2), we get that there also exist circulant graphs of the form
C(2a + 151, a) that do not admit any 2-bounded f,- broadcast.

4 General bounds on the independence broadcast num-
ber of C'(n;1,a)

In this section, we will provide some general upper and lower bounds on the cost of
independent broadcasts on circulant graphs of the form C(n;1,a), 2 < a < L%Jv that will
be useful in the next section.

We first introduce some notation and a useful lemma. Let f be an independent broadcast
on C(n;1,a). We then let

Vi={v e V" | flv) =1}, Vi ={v; € V]| f(v;) =2} and V72 = {v; € V[ | f(uvy) > 2}.

In particular, if f is 2-bounded, we then have V" = V} U V7.
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00 } 0101010 (I)
A
The vertices of the set A}, a =7

2

The vertices of the set B? (the black vertices) , a =7

Figure 5: The sets A% and Bj;.

Consider now a 2-bounded independent broadcast f and any vertex v; € Vf1 such that
f(vi—1) = f(v;—2) = 0. Since f is an independent broadcast, we necessarily have f(v;41) = 0.
Moreover, we then have either f(v;12) =0 or f(v;12) = 1. Therefore, the broadcast values
of the sequence of vertices v;v;11v;12 ... is of the form either 100, 10100 or 1010. .. 100.

For each vertex v; € V} such that f(v;_1) = f(vi_s) = 0, we then let
Ap = {vips, 0<L<2p+2}

be the set of vertices satisfying (i) f(vizor) = 1 and f(viyor+1) = 0 for every k, 0 < k < p,
and (i) f(vi+2p+2) = 0.

Now, for each vertex v; € V7, we let

B} = {Vj—at1} U{0j, 0541, Vjy2} U{Vjras1}-

The definition of these two sets is illustrated in Figure 5. These sets have the following
properties.

Lemma 9 For every 2-bounded independent broadcast f on C(n;1,a), 2 < a < \_%J , the
following holds.

1. For every vertex v; € Vi, |AY| = 2f(A}) + 1.
2. For every vertex v; € Vf2, \B}\ =5.

9. Toevs 141+ S, 2 1Bl <.
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Proof. The first two items directly follow from the definition of the sets A’J} and Bj;. It
also follows from the definition that A% N A% = () for every two distinct vertices v; and vy

in Vfl. Similarly, we necessarily have Bj; N B;/ = {) for every two distinct vertices v; and v,/
in V7, since otherwise we would have d(vj,v;) < max{f(v;), f(vy)} = 2,' contradicting
the fact that f is an independent broadcast. The same argument gives A% N B} = () for
every two vertices v; € Vf1 and v; € VfQ. All together, these three properties imply that
Item 3 also holds. 0

The next result provides a general upper bound on the broadcast independence number
of circulant graphs of the form C(n;1,a), with 3 < a < \_%J and 3a < n.

Proposition 10 If n and a are two integers such that 3 < a < \_%J and 3a < n, then,
for every 2-bounded independent broadcast f on C(n;1,a), we have

n—’VQ}
o(f) < {TfJ :

Proof. Let f be any 2-bounded independent broadcast on C(n;1,a) (it follows from
Theorem 8 that such broadcasts exist). From Lemma 9, we get

STIA 4+ Y B =2f(V]) + [V +3f(V) = [VF| <,

U»;GVfl U]'GVf2
which gives
2f (Vi) =2f(V})+2f(V}) <n— \VH + [VF] = F(VP) <n+ [VE| = F(VE).

Now, since f(v;) = 2 for every v; € V7, we have f(V7) =2 ’Vf2

, and thus
n— |V?
o(f) = (V) < {#J :
This completes the proof. O

When a is even, the upper bound given in Proposition 10 can be improved as follows.

Proposition 11 Ifn and a are two integers such that 2 < a < L%J and a 1s even, then,
for every 2-bounded independent broadcast f on C(n;1,a), we have

s - 45299)]
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Proof. Let f be any 2-bounded independent broadcast on C(n;1,a). Observe first that
we necessarily have \A;| < a + 1 for every vertex v; € Vfl, since otherwise this would
give f(v;) = f(viza) = 1, contradicting the fact that f is an independent broadcast. This
implies f(A}) < §. Using item 1 of Lemma 9, we then get

Ayl 2f(AF) +1 1 2 2(a+1)
R A
and thus 2( .
Ayl > 20 D ),

From Lemma 9, we then get

n>Z\A\+Z\B )f(vf)+3fvf — V7],
vZGVf UJGVf
which gives
2(a+1 a—2
e )f(V)+ Fve) = 1vel.

Finally, since f(V#) = 2|V}, we get

Q(Q(j 1)f(V) <n+|VH - L“a_ 2) V2| =
and thus . o4
U(f):f(v) < \‘Q(T—i—l) (n—T’Vf})J .
This completes the proof. O

Proposition 12 Ifn, a, k1 and ko are four integers such that n = ky(a+ 1) + ko(a — 1),
6 <ac< [ﬂj, and a is even, then, for every independent broadcast f on C(n;1,a), we

have ’
o2 (2) i (3 1)

Proof. Let n = ky(a+1)+kz(a—1). The circulant graph C'(n; 1, a) consists of k1 sequences
of a+ 1 vertices and ks sequences of a — 1 vertices. Let f be a mapping from V(C(n;1,a)
to {0, 1}, defined as follows (see Figure 6 for the case a = 12). For every sequence of a+ 1
or a— 1 vertices, we let the broadcast values of the form 1010...10100. Since a is even, for
every two consecutive sequences, the f-broadcast vertices are pairwise non adjacent and

then, f is an independent broadcast on C(n;1,a), with cost o(f) = ky <a> + ko <— — 1)

2
o2 (2) i (3 1)
This completes the proof. 0

Hence,
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V; m Vita E Vit-2a

(a + 1 vertices) (a + 1 vertices)

(a) two consecutive sequences of a + 1 vertices

V; m Vita E Vit-2a

(a + 1 vertices) (a — 1 vertices)

(a) two different sequences of vertices

V; m Vita _O_._./?\_._Q Vit-2a

(a — 1 vertices) (a — 1 vertices)

(a) two consecutive sequences of a — 1 vertices

Figure 6: Construction of the mapping f in the proof of Proposition 12 (a = 12) .

5 Some exact values

We determine in this section the broadcast independence number of circulant graphs of
the form C(n;1,a), for various values of n and a. In several cases, we prove, thanks to
Observation 2.1, that the independence number and the broadcast independence number
of these graphs coincide.

In [11], Liancheng, Zunquan and Yuansheng determined the exact value of the indepen-
dence number of some circulant graphs of the form C(n;1,a).

Proposition 13 (Liancheng et al. [11]) For every two integersn and a with2 < a < \_%J,

we have
1. a(C(n;1,a)) =%, for even n and odd a,
2. a(C(n;1,a)) = 5%, for odd n and a € {3,5},
3. a(C(n;1,2)) = | %],
(C(n;

Several of our results in this section will thus extend the results of Proposition 13.
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We first consider the case of circulant graphs of the form C(n;1,2), n > 4. It is not
difficult to check that, for every n > 4, antipodal vertices in C'(n;1,2) are at distance

("T’lw apart from each other. We thus have the following.

-1
Observation 5.1 For every integer n, n > 4, diam(C'(n; 1,2)) = {n 1 —‘ .

The broadcast independence number of circulant graphs of the form C(n;1,2) is given by
the following result.

Theorem 14 For every integer n > 4,

a(C(n;1,2)) =1, if n € {4,5},

-3
Bp(C(n;1,2)) = . 5 ifn=9 (mod 12),

2(diam(C(n; 1,2)) — 1) = 2 U” T 1} - 1) . otherwise.

Proof. Since C'(4;1,2) and C(5; 1,2) are both complete graphs, the result obviously holds
for n € {4,5}.

Suppose now n > 6. By Proposition 1, 5,(C(n;1,2))
every n. We will prove that we have £,(C(n;1,2))
(mod 12), and 3,(C(n;1,2)) = 23 otherwise.

> 2(diam(C(n; 1,2)) — 1) holds for
< 1

2
2(diam(C(n;1,2)) = 1) if n £ 9

Let f be an independent [j-broadcast on C(n;1,2). Each vertex v € VfJr f-dominates
4f(v) + 1 vertices. Moreover, each f-broadcast vertex is f-dominated exactly once, and
each non-broadcast vertex is f-dominated at most twice. This gives

4f(Vf+) + |Vf+| <2 (n - |Vf+|) + |Vf+|7
and thus
CmL2) =a(f) = Y fw) = fv) < 1]
bl ) 2 M

vGVJr
We now consider three cases, depending on the value of [V7].
L Vi <2
If [V = 1, then V" = {v;} for some vertex v;, and thus
o(f) = f(v) <e(v;) =diam(C(n; 1,2)) < 2(diam(C(n;1,2)) — 1).

If \Vfﬂ = 2, then V" = {v;,v;} for some distinct vertices v; and v;, and thus

o(f) = f(v:) + f(v;) < 2(diam(C(n;1,2)) — 1).
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2. |V > 4
In that case, we get

o(f) <

= = ()

and thus o(f) < 2 ([21] — 1) = 2(diam(C(n; 1,2)) — 1) by Observation 5.1.

Let Ver = {0iy, Vi), Vip }, With 0 <ig < i3 < iy < n — 1. We consider two subcases,
depending in the parity of n.

(a) n is even.
Since f is a [,-broadcast, we have

f(vl-j) = min {d(vij,vijfl) -1, d(vij,vml) — 1}

for every j, 0 < j < 2 (subscripts are taken modulo 3).

Moreover, since min{z, y} < “"T” for every two integers x and y, we get
U(f) = f("%’o) + f(vil) + f(vi2> < d(viov Uil) + d(vilv Uiz) + d(viwvio) - 3.

Now, since

d(vijﬂ}iv/) _ ’V‘Zj—ljlr‘ S |ZJ—Z]/|+1
i 2 2

for every two distinct vertices v;; and v;,, We get

auvgV%—hkﬂh—gkww—%HﬁJ_gz{E%EJ

Finally, since n is even, we get

o(f) < V;?’J - ";4 <2 d";ﬂ - 1) = 2(diam(C(n; 1,2)) — 1).

(b) n is odd.
If every non-broadcast vertex is f-dominated exactly twice, then we necessarily
have f(vi,) = f(vi;) = f(vi,) = £ for some value ¢. Moreover, since each
vertex v;;, 0 < j < 2, f-dominates 4f(v;;) +1 = 4¢ + 1 vertices, we get
12043 = 2(n — 3) 43 (each vertex in V;" is f-dominated only once), and thus
¢ =222 This implies n = 3 (mod 6) and o(f) = 252
Now, we have

n—3 n—1

o= s |

if ¢ is even, that is n =3 (mod 12), while we have

w_q)zzmmmcmg@»_n

a(f):";3:3£>3£—1:2d

n—1

w - 1) = 2(diam(C(n;1,2)) — 1)
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if ¢ is odd, that isn =9 (mod 12).

Suppose now that at least one non-broadcast vertex is f-dominated only once,
which implies 4f(V;") 43 < 2(n —4) +-4 = 2n — 4 and thus

Since n is odd, we get

o(f) < f"; 7J - f”; 8J <2 U" T 1} - 1) = 2(diam(C(n; 1,2)) — 1).

In all cases, we thus get 5,(C(n;

1,2)) = o(f) < f(V]") < 2(diam(C(n;1,2)) = 1) if n # 9
(mod 12), and £,(C(n; 1,2)) = o(f)

(
= ifn=9 (mod 12), which completes the proof.
O

Comparing the value of a(C(n;1,2)) given in [11] with £,(C(n;1,2)), it is clearly seen
that a(C(n;1,2)) < B(C(n;1,2)) is almost always true.

Since the circulant graphs C'(2a + 1;1,a) and C(2a 4 1;1,2) are isomorphic for every
integer a, a > 2, Theorem 14 admits the following corollary.

Corollary 15 For every integer a > 2,

a—1, ifa=2,ora=4 (mod 6),

B(C(2a+1;1,a)) = 9 <{g—‘ — 1) , otherwise.

We now determine the broadcast independence number of circulant graphs of the form
C(n;1,a) when n is even and a is odd.

Theorem 16 If n and a are two integers such that n is even, n > 6, a is odd and
3<a< \_%J, then

Bo(C(n;1,a)) = a(C(n;1,a)) = g

n7|V2|
2
dependent broadcast g on C(n;1,a), which implies 3,(C(n;1,a)) < 5. Consider now
the mapping f from V(C(n;1,a)) to {0,1} defined by f(v;) = 1 if and only if 7 is
even. Since a is odd, f is clearly an independent broadcast on C(n;1,a). This im-
plies 3,(C(n;1,a)) > o(f) =% and thus, thanks to Observation 2.1, 3,(C(n;1,a)) =

a(C(n;1,a)) = . This completes the proof. O

Proof. From Proposition 10, we get that o(g) < { J for every 2-bounded in-

We are now able to determine the broadcast independence number of circulant graphs of
the form C(n;1,3).
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Theorem 17 For every integer n > 6,

n L

BL if n is even,
Gp(C(n;1,3)) = a(C(n; 1,3)) = n—3
—5 otherwise.

Proof. If n is even, the result directly follows from Theorem 16.

Suppose now that n is odd and consider the mapping f from V' (C(n; 1,3)) to {0, 1} defined
by f(v;) = 1 if and only if ¢ is even and i < n — 5. Since all broadcast vertices have an

even index not greater than n — 5 and 3 is odd, f is clearly a 1-bounded independent

broadcast on C(n;1,3) with o(f) = 252 and V7 = 0. We thus get 5,(C(n; 1,3)) > 252

and, thanks to Observation 2.1, 5,(C(n;1,3)) = a(C(n; 1, 3)).

n—|Vy|
2
broadcast g on C(n;1,3). If [V2| > 2, then o(g) < |%52] = 252 = o(f). If |V2| =1, say
V2 = {v;}, then we necessarily have 9(vj-1) = g(vj-2) = g(vj—3) = g(vj—a) = 0, and thus
vj—1 and vj_5 do not belong to any set A} for any v; € V:ql. Using this remark together

with Lemma 9, we then get

From Proposition 10, we get that o(g) < L J for every 2-bounded independent

STIA+ > B =2f (V) + |V, [ +3f(v;) —1<n—2,

UiEVgl ’U]'E‘/vg2
which gives, since f(v;) > 2,

n—Q—}V;’—f(Uj)—i-l n—3

o(9) = (V) + f(v;) < > < = a(f).

Finally, if }VZ’ = 0 then, since n is odd, there necessarily exists a vertex v; € Vg1 such
that g(vi12) = 0, which implies g(vi41) = g(viz3) = 0. This implies that v;3 does not
belong to any set Ag for any vy € Vgl. Using this remark together with Lemma 9, we
then have 2f (V') + |V}!| <n —1, and thus

a(g):f(vgl)ﬁn_lglvg} < {n;QJ Zn_?):a(f).

"T’S, which completes the proof.

O

Hence, in all the previous cases, we have o(g) < o(f) =

We now determine the broadcast independence number of circulant graphs of the form
C(n;1,4).
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Theorem 18 For every integer n > 8,

B(C(n;1,4)) = a(C(n; 1,4)) = {QF"J '

Proof. From Proposition 11, we get that

o(g) < {ﬁ (n— a;4 }V;?})J

for every 2-bounded independent broadcast g on C(n; 1, a), which gives o(g) < \_%”J, and
thus 5,(C(n;1,4)) < [2].

5

We now construct a mapping f from V(C(n; 1,4)) to {0,1}. Let n = 5k+r with 0 < r < 4.
We consider five cases, depending on the value of r.

1. r=0.
We let f(v;) =11if (¢ mod 5) is odd, and f(v;) = 0 otherwise.

2. r=1
We let f(v;)) = 1if (i modb5)isodd and ¢ < n —7, f(v,_2) = f(v,_5) = 1, and
f(v;) = 0 otherwise.

3. r=2.
We let f(v;) =11if (i mod 5) is odd and i <n — 3, and f(v;) = 0 otherwise.

4. r=3.
We let f(v;) =1if (i mod 5) is odd, and f(v;) = 0 otherwise.

d2. r=4.
Welet f(v;) = 1if (i mod 5)isoddandi < n—7, f(vy—2) = f(vn_5) = f(va_s) =1,
and f(v;) = 0 otherwise.

Clearly, in each of the previous cases, f is a 1-bounded independent broadcast on C'(n; 1,4)

such that o(f) = |%| and V7 = 0. Hence, 5,(C(n;1,4)) = || and, thanks to Obser-

vation 2.1, 5,(C(n;1,4)) = a(C(n; 1,4)). This completes the proof. O

Thanks to Proposition 11, we are now able to determine the broadcast independence
number of circulant graphs of the form C'((a + 1)k;1,a) with a > 5 and k > 2 (the cases
a =2, 3 and 4 are already covered by Theorems 14, 17 and 18, respectively).

Theorem 19 Ifa and k are two integers such that a > 5 and k > 2, then we have

ak

5

(a+ 1)k
5

if a is even,
B(Cl(a+1)k;1,a)) = a(C((a+1)k; 1, a)) =

otherwise.
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Proof. If a is odd, then (a+ 1)k is even and the result directly follows from Theorem 16.

Suppose now that a is even, which implies a > 6. From Proposition 11, we get that

o) < gy (10 06— 24 020) | = | gy o+ k| = &

for every 2-bounded independent broadcast g on C'((a+1)k; 1, a), which implies 8,(C((a+
Dk;1,a)) < %

Consider now the mapping f from V(C((a + 1)k;1,a)) to {0,1} defined by f(v;) = 1 if
and only if ( mod a + 1) is odd. Since a is even, f is clearly a 1-bounded independent

broadcast on C((a 4 1)k;1,a) with o(f) = % and V7 = 0. This implies 5,(C((a +

1)k;1,a)) > % and thus, thanks to Observation 2.1, 5,(C((a 4+ 1)k;1,a)) = a(C((a +

1)k; 1,a)) = 4. This completes the proof. O

We now consider the case of circulant graphs C'(n;1,a) when a divides n. We first in-
troduce two new sets of vertices, slightly modifying the definition of the sets Aﬁc and B}
defined in Section 2, using a-edges instead of 1-edges. Let f be any 2-bounded independent
broadcast on C'(n;1,a). Now consider any vertex v; € V| such that f(v;_o) = f(vi—2a) =
0. Since f is an independent broadcast, we necessarily have f(v;1,) = 0. Moreover, we
then have either f(viie,) = 0 or f(viz2,) = 1. Therefore, the broadcast values of the
sequence of vertices v;v;4Vi124 - .- is of the form either 100, 10100 or 1010...100.

For each vertex v; € Vf1 such that f(v;_s) = f(vi—2a) = 0, we then let

A”} = {Vitta, 0 <0< 2p+ 2}

be the set of vertices satisfying (i) f(vijora) = 1 and f(vit2k+1a) = 0 for every £,
0 S k S P, and (11) f(vi+(2p+2)a) = 0.

Now, for each vertex v; € V7, we let

B = {v;} U{vj1a-1,Vj4a> Vitar1} U {Vjr2a}-

These sets satisfy the same properties as those of the sets Ajc and B} given in Lemma 9.
The proof is similar to the proof of Lemma 9 and is omitted.

Lemma 20 For every 2-bounded independent broadcast f on C(n;1,a), if any, the fol-
lowing holds.

1. For every vertex v; € Vfl, |A’3}| = Qf(Alif) + 1.

2. For every vertex v; € V7, \B’?}\ =5.
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3 Dev: A+ 32, ev? B} < n.

We are now ready to determine the independent broadcast number of circulant graphs of
the form C'(qa;1,a), a > 5 and g > 4. Recall that the cases a = 2, 3 and 4 are already
covered by Theorems 14, 17 and 18, respectively, while the cases ¢ = 2 and ¢ = 3 are
covered by Theorems 3 and 4, respectively.

Theorem 21 If a and q are two integers such that a > 5 and q > 4, then we have

Bp(Cl(gqa;1,a)) = a(C(qa;1,a))

.

%’ if a is odd, and q is even,

-1
w, if a and q are odd,

St D] if a and q are even,
a
2 ~1
min { {Q(QZ— 1)J , (g 5 )a}’ otherwise.
a

Proof. We consider the four cases separately.

1. a is odd and q is even.
In that case, ga is even and the result directly follows from Theorem 16.

2. a and ¢ are odd.
In that case, ¢ > 5 and we know by Lemma 7 that C'(¢a; 1, a) admits a 2-bounded -
broadcast. Let f be any 2-bounded independent broadcast on C(qa;1,a). Observe
first that, since ¢ is odd, we necessarily have \A’j«\ < q for every vertex v; € Vfl,
since otherwise this would give f(v;) = f(Vigy(g-1a) = f(vi—a) = 1, contradicting
the fact that f is an independent broadcast. Therefore f (A”j}) < %, and thanks

to Item 1 of Lemma 20, we get

AL 2f(A%) 11 | 2 2
= SR R S
RV TV B TV U B T

which gives
% 2q 7
A% > —f(A/f)‘

Now, using Item 2 and Item 3 of Lemma 20, we get

ga> Y |AG+ Y |BY > —f<vf>+ f(vf>

’UzEV ’U]EV2
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which gives

and then

Consider now the mapping g from V(C(qa;1,a)) to {0,1} defined by g(v;) = 1 if
iis even and i < (¢ — 1)a — 1, and g(v;) = 0 otherwise. Clearly, ¢ is a 1-bounded
independent broadcast on C'(ga; 1, a). Moreover,

(g—1a
2 bl

By(Clqa; 1,a)) > o(g) =

and thus, thanks to Observation 2.1,

(¢ —1)a

Bi(Clgai1,a)) = a(Clgai 1, 0)) = =

. a and ¢ are even.

Note first that if a + 1 divides g, say ¢ = ¢(a+ 1) for some integer ¢ > 1, which gives
ga = la(a + 1), the result directly follows from Theorem 19 for k& = fa, since

@ gt |
_ |

2 2 2fa+1) a+1)

Assume now that this is not the case, so that k(a+1) < ¢ < (k+2)(a+1) for some
even integer k > 2. Let ¢ = k(a + 1) + 2¢ (recall that k and ¢ are even) for some
integer ¢/, 1 < ¢ < a. From Proposition 11, we get that

0% |y (0= 5 1771) | <

for every 2-bounded independent broadcast f on C'(ga;1,a). Moreover, we have

{qa2 J:(a—l)Qjﬂ q J:(a—l)q k

2(a+1) 2 2(a+1) Ty

2 2

which implies
(a—1)g  k

Bp(Clga;1,a)) < 5 + 7

Since qa = (ka + ¢)(a + 1) + ¢(a — 1), and thanks to Proposition 12, we get

_ 2 2
5(Clga 1)) > P00 L0 D) RE oy B aZ et Dy,

which gives

B(C(qa; 1,a)) > (a—21)q + g

Finally, by Observation 2.1, we get

ﬁb(C(QGQ 1’ a)) = Oé(C((]@ 1, (l)) = \‘2(33_ 1)J '
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(i+2)a

(i+1)a

ia

Figure 7: The circulant graph C(qa;1,a) (only subscripts of vertices are indicated)

4. a is even and ¢ is odd.
The graph C(qa;1,a) can be seen as a copies Cy,...,Cy_1 of a ¢g-cycle, with Cy =
{Vk, Vktas Vet2a - - - s Vkt(g—1)a} for every k, 0 < k < a — 1, cyclically connected as
depicted in Figure 7.

We consider three subcases.

(a) g=a—1.
Since ¢ is odd, similarly to Case 2 (¢ and a odd), we have

qg—1)a
U(f) < (T)
for every independent broadcast f on C'(qga; 1, a). Consider the sets S, 0 < k < a — 1
defined as follows (see Figure 8 for the case a = 6 and ¢ = 5).

SO = {an V24, V4a5 « - -y V(g—5)a> U(q—3)a}7
S = {U1+a7 V1+3as V14+5a5 « - + s Vl+(g—4)a> vl+(q72)a}7
Sy = {U2+2a7 V2+4ay V2+6as - - - s U24(g—3)as U2+(q71)a}7

Safl = {’Uafla U3a—1,Usa—1; - - -y Un—da—1, Un72a71}-
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v40

Figure 9:

V10

020

q + 1 cycles 20 cycles

Construction of the sets S; in the proof of Theorem 21 (a =10, ¢ =5, ¢ = 2)

From this definition, we clearly get that (J{—} S is a independent set in V/(G).
This gives

q_
2

= a

L < a(Clga; 1,0)) < Bu(Clgas 1, a).

a—1
s
k=0

Thanks to Observation 2.1, we then get

By(Clqa; 1,0)) = a(Clga; 1, a)) = w

qg<a-—1.

Let a = ¢+ 1 + 2¢ (recall that a and ¢ have different parity) for some integer
¢, ¢ > 1. For every cycle Cy, Kk =0,1,...,q, let S; be the set defined as in the
previous subcase and, for every cycle Cy, k = q+1,...,q+2¢(, let (see Figure 9
for the case a = 10, ¢ = 5 and ¢ = 2)

Sk = {Uka Vk+2a5s Vk+4as - - - 5 Vk4+(g—5)as Uk+(q—3)a}7 if k is even,

Sy = {Uk+a, Uk+3as Vk+5as - - + » Uk+(g—4)as Uk+(q—2)a}7 if £ is odd.

From this definition, we clearly get that UZ;(l) Sk is an independent set of
C(qa;1,a). We then have

a—1
U skl =al S < alClgos1,0)) < A(Claai 1, a)
k=0

and, since ¢ is odd, we get

it <a(150).

Thanks to Observation 2.1, we finally get

(¢—1a

Bi(Clgas1,0)) = a(Clgai1,0)) = =
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(c) ¢>a-+1.

Note first that if a + 1 divides ¢, say ¢ = £(a+ 1) for some integer ¢ > 1, which
gives qa = la(a + 1), the result directly follows from Theorem 19 for k = (a,
ak B

since
_ |9’
2 2 2a+1) [20a+1)]

Suppose now that this is not the case, so that k(a +1) < ¢ < (k+2)(a + 1),
for some odd integer k£ > 1. Let ¢ = k(a+ 1)+ 2¢ (recall that k and ¢ are odd)
for some integer ¢, 1 < ¢ < a. From Proposition 11 we get

la? qa®

By(Clqai 1,a)) < { aa”

2(a+1)

J_

qgla—1)(a+1)+ qJ

2(a+1)
q(a—l)(a+1)—|—(a+1)+q—(a+1)J
i 2(a+1) 2(a+1)
gla—1)(a+1)+ (a+1) (k—l)(@—i—l)—i—%J
L 2(a+1) 2(a+1)
(a—1)g+1 k-1
B 2 T

Moreover, we have ga = (ka+{)(a+1)+£¢(a—1) and, thanks to Proposition 12,

we get
2 2
— 1
5(Claas 1.0)) = (hat ) D40 -1) = E ppan) = ML RO D g
which gives
a—1)g+1 k-1
B(Cgas 1)) > 0T L
Therefore, by Observation 2.1, we finally get
. B . ~(a-1)g+1 k-1 qa®
Bp(C(qa;1,a)) = a(C(ga; 1,a)) = 5 + R ECEE

This completes the proof. O

Our last general result is the following.

Theorem 22 Let n, a, q and r be integers such that n = qa +r, a is even, a > 6 and
q > max{2,r}. If either ¢ and r have the same parity, or q and r have different parity

and g +1r > a— 1, then we have

By(C(n;1,a)) = a(C(n;1,a)) = {

2(@2— 1)”J '
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Proof. From Proposition 11, we get that

0= g (1~ M) < |y

for every 2-bounded independent broadcast f on C(n;1,a). We consider two cases.

1. ¢ and r have the same parity.
Note first that if a + 1 divides ¢ — r, say ¢ — r = {(a + 1) for some integer ¢, which
gives gqa+r = (¢—¥)(a+1), the result directly follows from Theorem 19 for k = ¢—/,

e ak _ a(g—"0)  (qa+r)a {(qa + T)aJ
2(a+1) |

2 2 2(a + 1)

Suppose now that this is not the case, so that k(a+1) < ¢—r < (k+2)(a+ 1), for
some even integer k. Let ¢ —r = k(a+ 1) + 2¢ (recall that k and g — r are even) for
some integer ¢, 1 < ¢ < a. We have

e e e T S M

La

Since —0 < — < —l+1, we get

(a+1)

L Lt
which gives

By(C(qa+7;1,a)) < {2@1 1)(qa+T)J _ % B % g —zk)a .

Furthermore, since

_qtr+kla—1)
N 2

C]a—i—r:—q—;r(a—i-l)%——q_r(a—l) (a+1)+£(a—1),

2
and thanks to Proposition 12, we get

qg+r+kla—1) <a)+€(g_1)_q+r+k(a—1)+2€ <2)_€'

. 1 > _
Bu(Clgatr;1,a)) = 2 2) 35 2 2

Again, since ¢ — r = k(a + 1) 4+ 2¢, we have

By(Clqa; 1,a)) = — ¢,

—r—_9 —
g+r+qg—r k<9>_g:(q k)a
2 2 2

and thus, thanks to Observation 2.1, we finally get

(a—l)q+1+k—1: {2((;@2 J

B(Clga+751,0)) = a(Claa+ 73 1,0)) = 5 Y
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2. q and r have different parity.
Similarly to the previous case, if a + 1 divides ¢ — r, then

k|l

2 | 20a+1)

Suppose now that this is not the case. We consider two subcases, depending on
whether ¢ — r is greater than a 4+ 1 or not.

(a) g—r<a+1.
In that case, we have

By(Clga+1;1,a)) < {ﬁ(q& L T)J _ {qa(a +1)—(¢— T)aJ

2(a+1)
a —
_ag |_lg=rja)
2 2(a+1)
Since ¢ —r < a+ 1, we get
41 - 41
g-r+ (g=r)a _ q-r+ ey
2 2(a+1) 2
and thus 1
a —r
BGo(C(qa+1;1,a)) < ?q — QT
1-— — 1
Since ga + r = W—%(a%—l)—i—wm—l), and thanks to

Proposition 12, we have

- a1
By(Clga+131,a)) > (W#a) =+ (W) (5-1).

which gives

a —r+1
B(C(qa; 1,a)) > g _g=rom2
2 2
Finally, thanks to Observation 2.1, we get
ag q—r+1
Bi(Clgas1,a)) = o(Clga 1,a) = 5 — ——5—.

(b) g—r>a+1
In that case, we have k(a+ 1) < ¢ —r < (k+2)(a + 1), for some odd integer
k>1. Let q—r = k(a+ 1)+ 2¢ (recall that k and ¢ — r are odd) for some
integer ¢, 1 < ¢ < a. Since

{‘%J - {‘ (’“%TJWJ - ‘% " {‘ <a€f1>J

La
(a+1)

{%J _ {qa(aza;g—ﬂaJ _aq {_MJ _a_ka_,

and —¢ < —

< —l+1, we get

)
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This implies

a(qa +r) aq ak (g —k)a
o)< Mot _eq eb , - Fae ,
By(Clga+7;1,a)) < {2(@+1)J 5 "3 l 5 1
1- — 1
Moreover, since qa + r = Wﬁfa(a + 1) + %(a — 1) and

qg—r==Fkla+1)+2¢, we get

g+r+k(a—1)

qa +1 = 5 (a+1)+{l(a—1).
Hence, we have
k(a —1 k(a—1)+2¢
Bu(Clgatri1,a) > LFTERO=D ooy gtrtka-iata
2 2 2 2 2
which gives
—r—2k —k
B(Clgatrays Errazr=2k o, (¢=ka_,
2 2 2
Finally, thanks to Observation 2.1, we get
qa’
Go(C(ga+1m;1,a)) = a(Cqa+r;1,a)) = {mJ .
This completes the proof. O

6 Discussion

n

We proved that every circulant graph of the form C(n;1,a), 3 < a < [3], admits a
2-bounded [y-broadcast,except when n = 2a + 1, or n = 2a and a is even. Using this
property, we determined the exact value of the broadcast independence number of several
classes of circulant graphs of the form £,(C(n;1,a)), 2 < a < [§]. In several cases,
we showed that (3,(C(n;1,a)) reaches one of its lower bounds, namely a(C(n;1,a)) or
2(diam(C'(n; 1,a)) — 1). In particular, whenever G,(C(n;1,a)) = a(C(n;1,a)), we get

that C'(n; 1,a) admits a 1-bounded fSy-broadcast.

We finally mention a few open problems that seem worth to be investigated.

1. Determine the value of 5,(C(n;1,a)) for the remaining unsolved cases namely:

(a) For odd integers a and n, with @ > 5 and a f n.

(b) For integers n, a, ¢ and r, with n = gqa+r, a > 6 is even, n is divisible neither
by a nor by a + 1, and either
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i. g<r,or
ii. ¢ > r, ¢ and r have different parity, ¢ +r < a — 1.

2. Determine the broadcast independent number of other classes of circulant graphs.

3. Characterize the classes of graphs G for which 5,(G) = a(G) or 5,(G) = 2(diam(G) — 1),
respectively.
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