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Abstract: Let G be a simple undirected graph.A broadcast on G is a function
f : V (G) → N such that f(v) ≤ eG(v) holds for every vertex v of G, where
eG(v) denotes the eccentricity of v in G, that is, the maximum distance from
v to any other vertex of G. The cost of f is the value cost(f) =

∑

v∈V (G) f(v).
A broadcast f on G is independent if for every two distinct vertices u and v in
G, dG(u, v) > max{f(u), f(v)}, where dG(u, v) denotes the distance between
u and v in G. The broadcast independence number of G is then defined
as the maximum cost of an independent broadcast on G. In this paper, we
study independent broadcasts of caterpillars and give an explicit formula for
the broadcast independence number of caterpillars having no pair of adjacent
vertices with degree 2.
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1 Introduction

All the graphs we consider in this paper are simple and loopless undirected graphs. We
denote by V (G) and E(G) the set of vertices and the set of edges of a graphG, respectively.

For any two vertices u and v of G, the distance dG(u, v) between u and v in G is the
length (number of edges) of a shortest path joining u and v. The eccentricity eG(v) of
a vertex v in G the maximum distance from v to any other vertex of G. The minimum
eccentricity in G is the radius rad(G) of G, while the maximum eccentricity in G is the
diameter diam(G) of G. Two vertices u and v with dG(u, v) = diam(G) are said to be
antipodal.

A function f : V (G) → {0, . . . , diam(G)} is a broadcast if for every vertex v of G,
f(v) ≤ eG(v). The value f(v) is called the f -value of v. Given a broadcast f on G, an
f -broadcast vertex is a vertex v with f(v) > 0. The set of all f -broadcast vertices is
denoted V +

f . If u ∈ V +
f is a broadcast vertex, v ∈ V (G) and dG(u, v) ≤ f(u), we say that

u f -dominates v. In particular, every f -broadcast vertex f -dominates itself. The cost
cost(f) of a broadcast f on G is given by

cost(f) =
∑

v∈V (G)

f(v) =
∑

v∈V +

f

f(v).

A broadcast f on G is a dominating broadcast if every vertex of G is f -dominated by
some vertex of V +

f . The minimum cost of a dominating broadcast on G is the broadcast
dominating number of G, denoted γb(G). A broadcast f on G is an independent broadcast
if every f -broadcast vertex is f -dominated only by itself. The maximum cost of an inde-
pendent broadcast on G is the broadcast independence number of G, denoted βb(G). An
independent broadcast on G with cost β is an independent β-broadcast. An independent
βb(G)-broadcast on G is an optimal independent broadcast. Note here that any optimal
independent broadcast is necessarily a dominating broadcast.

The notions of broadcast domination and broadcast independence were introduced by
D.J. Erwin in his Ph.D. thesis [9] under the name of cost domination and cost indepen-
dence, respectively. During the last decade, broadcast domination has been investigated
by several authors, see e.g. [1, 2, 3, 5, 6, 7, 11, 12, 13, 14, 15, 16], while independent
broadcast domination has attracted much less attention.

In particular, Seager considered in [15] broadcast domination of caterpillars. She char-
acterized caterpillars with broadcast domination number equal to their domination num-
ber, and caterpillars with broadcast domination number equal to their radius. Blair,
Heggernes, Horton and Manne proposed in [1] an O(nr)-algorithm for computing the
broadcast domination number of a tree of order n with radius r.

However, determining the independent broadcast number of trees seems to be a difficult
problem. We propose in this paper a first step in this direction, by studying a subclass
of the class of caterpillars. Recall that a caterpillar is a tree such that deleting all its
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pendent vertices leaves a simple path. The subclass we will consider is the subclass of
caterpillars having no pair of adjacent vertices with degree 2.

We now review a few results on independent broadcast numbers. Let G be a graph and
A ⊂ V (G), |A| ≥ 2, be a set of pairwise antipodal vertices in G. The function f defined
by f(u) = diam(G) − 1 for every vertex u ∈ A, and f(v) = 0 for every vertex v 6∈ A, is
clearly an independent |A|(diam(G)− 1)-broadcast on G.

Observation 1 (Dunbar, Erwin, Haynes, Hedetniemi and Hedetniemi [8])
For every graph G of order at least 2 and every set A ⊂ V (G), |A| ≥ 2, of pairwise
antipodal vertices in G, βb(G) ≥ |A|(diam(G) − 1). In particular, for every tree T ,
βb(T ) ≥ 2(diam(G)− 1).

An independent broadcast f on a graph G is maximal if there is no independent broadcast
f ′ 6= f such that f ′(v) ≥ f(v) for every vertex v ∈ V (G). In [9], D.J. Erwin proved the
following result (see also [8]).

Theorem 2 (Erwin [9])
Let f be an independent broadcast on G. If V +

f = {v}, then f is maximal if and only if

f(v) = eG(v). If |V +
f | ≥ 2, then f is maximal if and only if the following two conditions

are satisfied:

1. f is dominating, and

2. for every v ∈ V +
f , f(v) = min

{
dG(v, u) : u ∈ V +

f \ {v}
}
− 1.

Erwin proved that βb(Pn) = 2(n − 2) = 2(diam(Pn) − 1) for every path Pn of length
n ≥ 3 [9]. In [4], Bouchemakh and Zemir determined the independent broadcast number
of square grids.

Theorem 3 (Bouchemakh and Zemir [4])
Let Gm,n denote the square grid with m rows and n columns, m ≥ 2, n ≥ 2. We then
have:

1. βb(Gm,n) = 2(m+ n− 3) = 2(diam(Gm,n)− 1) if m ≤ 4,

2. βb(G5,5) = 15, βb(G5,6) = 16, and

3. βb(Gm,n) =
⌈
mn
2

⌉
for every m,n, 5 ≤ m ≤ n, (m,n) 6= (5, 5), (5, 6).
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In this paper, we determine the broadcast independence number of caterpillars having no
pair of adjacent vertices with degree 2.

The paper is organized as follows. We introduce in the next section the main definitions
and a few preliminary results on independent broadcasts of caterpillars. We then consider
in Section 3 the case of caterpillars having no pair of adjacent vertices with degree 2 and
prove our main result, which gives an explicit formula for the broadcast independence
number of such caterpillars.

2 Preliminaries

Let G be a graph and H be a subgraph of G. Since dH(u, v) ≥ dG(u, v) for every two
vertices u, v ∈ V (H), every independent broadcast f on G satisfying f(u) ≤ eH(u) for
every vertex u ∈ V (H) is an independent broadcast on H . Hence we have:

Observation 4 If H is a subgraph of G and f is an independent broadcast on G satisfying
f(u) ≤ eH(u) for every vertex u ∈ V (H), then the restriction fH of f to V (H) is an
independent broadcast on H.

A caterpillar of length k ≥ 0 is a tree such that removing all leaves gives a path of length
k, called the spine. Following the terminology of [15], a non-leaf vertex is called a spine
vertex and, more precisely, a stem if it is adjacent to a leaf and a trunk otherwise. A leaf
adjacent to a stem v is a pendent neighbor of v.

Note that a caterpillar of length 0 is nothing but a star K1,n, for some n ≥ 1. The
independent broadcast number of a star is easy to determine.

Observation 5 For every integer n ≥ 1, βb(K1,n) = n.

Indeed, an optimal broadcast f of K1,n is obtained by setting to 1 the f -value of every
pendent vertex of K1,n, if n > 1, or of one of the two vertices of K1,1. Therefore, in the
rest of the paper, we will only consider caterpillars of length k ≥ 1.

We denote by CT (λ0, . . . , λk), k ≥ 1, with (λ0, . . . , λk) ∈ N
∗×N

k−1×N
∗, the caterpillar of

length k ≥ 1 with spine v0 . . . vk such that each spine vertex vi has λi pendent neighbors.
Note that for any caterpillar CT of length k ≥ 1, diam(CT ) = k + 2. For every i such
that λi > 0, 0 ≤ i ≤ k, we denote by ℓ1i , . . . , ℓ

λi

i the pendent neighbors of vi. Moreover, we
denote by CT [a, b], 0 ≤ a ≤ b ≤ k, the subgraph of CT induced by vertices va, . . . , vb and
their pendent neighbors The caterpillar CT (1, 0, 2, 1, 1, 2, 1, 0, 3) is depicted in Figure 1.
Let f be an independent broadcast on a caterpillar CT = CT (λ0, . . . , λk). We denote by
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Figure 1: The caterpillar CT (1, 0, 2, 1, 1, 2, 1, 0, 3)

f ∗ the associated mapping from {v0, . . . , vk} to N defined by

f ∗(vi) = f(vi) +

j=λi∑

j=1

f(ℓji ), if λi > 0, and f ∗(vi) = f(vi) otherwise,

for every i, 0 ≤ i ≤ k. Intuitively speaking, when λi > 0, f ∗(vi) gives the “weight” of the
star-graph consisting of the vertex vi together with its pendent neighbors.

We will say that two independent broadcasts f1 and f2 on CT are similar whenever
f ∗
1 = f ∗

2 . Observe that any two similar independent broadcast have the same cost.

FromObservation 1, we get that βb(CT ) ≥ 2(k+1) for every caterpillar CT = CT (λ0, . . . , λk).
In particular, the function fc on V (CT ) defined by fc(ℓ

1
0) = fc(ℓ

1
k) = k + 1 and fc(u) = 0

for every vertex u ∈ V (CT )\{ℓ10, ℓ
1
k} is an independent broadcast on CT with cost 2(k+1).

In the following, we will call any independent broadcast f similar to fc and such that
|V +

f | = 2 a canonical independent broadcast.

The following lemma shows that, for any caterpillar CT = CT (λ0, . . . , λk), no independent
broadcast f on CT with f(v) > 0 for some stem v can be optimal.

Lemma 6 If CT = CT (λ0, . . . , λk) is a caterpillar of length k ≥ 1 and f is an indepen-
dent broadcast on CT with f(vi) > 0 for some stem vi, 0 ≤ i ≤ k, then there exists an
independent broadcast f ′ on CT with cost(f ′) > cost(f).

Proof. Since f(vi) > 0 and f is an independent broadcast, we have f(ℓji ) = 0 for every
j, 1 ≤ j ≤ λi. Consider the function f ′ defined by f ′(vi) = 0, f ′(ℓ1i ) = f(vi) + 1 and
f ′(u) = f(u) for every vertex u ∈ V (CT ) \ {vi, ℓ

1
i }. Since dCT (ℓ

1
i , u) = dCT (vi, u) + 1

for every vertex u ∈ V (CT ) \ {ℓ1i }, we get that f ′ is an independent broadcast on CT .
Moreover, we clearly have cost(f ′) = cost(f) + 1. �

The following lemma shows that for every optimal independent broadcast on a caterpillar,
at least one pendent vertex of each of the end-vertices of the spine is a broadcast vertex.

Lemma 7 Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1. If f is an optimal
independent broadcast on CT , then f ∗(v0)− f(v0) 6= 0 and f ∗(vk)− f(vk) 6= 0.
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Proof. Suppose to the contrary that f(ℓj0) = 0 for every j, 1 ≤ j ≤ λ0. We know by
Lemma 6 that f(v0) = 0. Let u be the f -broadcast vertex that dominates ℓ10 and let
f(u) = x. By Lemma 6, u is either a leaf or a trunk.

If u is a leaf, say u = ℓ
j
i , 1 ≤ i ≤ k, 1 ≤ j ≤ λi, let f ′ be the mapping defined by

f ′(ℓ10) = x + i, f ′(u) = 0 and f ′(u′) = f(u′) for every vertex u′ ∈ V (CT ) \ {ℓ10, u}. Note
that every vertex which was f -dominated by u is now f ′-dominated by ℓ10. The mapping
f ′ is thus an independent (cost(f) + i)-broadcast on CT , contradicting the optimality
of f .

If u is a trunk, say u = vi, 1 ≤ i ≤ k − 1, we similarly define a mapping f ′ by letting
f ′(ℓ10) = x+ i+1, f ′(u) = 0 and f ′(u′) = f(u′) for every vertex u′ ∈ V (CT )\{ℓ10, u}. The
mapping f ′ is thus an independent (cost(f)+ i+1)-broadcast on CT , again contradicting
the optimality of f .

The case f(ℓjk) = 0 for every j, 1 ≤ j ≤ λk, follows by symmetry. �

Observe that Lemma 7 can be extended to trees as follows:

Lemma 8 Let T be tree and T ′ be a subtree of T , of order at least 2, with root r. Let f
be an optimal independent broadcast on T . If r is an f -broadcast vertex, then T ′ contains
at least one other f -broadcast vertex. In particular, if T ′ is a subtree of height 1 (that is,
eT ′(r) = 1), then f(r) = 0.

Proof. Suppose to the contrary that f(r) > 0 and f(u) = 0 for every vertex u ∈
V (T ′) \ {r}. Let t′ = eT ′(r) and t′ = eT−(T ′−r)(r).

If f(r) < t′, the independent broadcast f ′ given by f ′(v) = f(r) for some vertex v in
T ′ with dT ′(r, v) = t′ and f ′(u) = f(u) for every vertex u ∈ V ′(T ) \ {v} is such that
cost(f ′) = cost(f) + f(r), contradicting the optimality of f .

If f(r) ≥ t′, then r is the unique f -broadcast vertex, which implies cost(f) < 2(diam(T )−
1), again contradicting the optimality of f by Observation 1.

Hence t′ > f(r) ≥ t′. Let now v be any neighbor of r in T ′. Since t′ > f(r) ≥ t′, we have
eT (v) = eT (r)+1 = t′+1 > f(r)+1. The function f ′ defined by f ′(r) = 0, f ′(v) = f(r)+1
and f ′(u) = f(u) for every vertex u ∈ V (T ) \ {r, v} is therefore an independent broadcast
on T with cost(f ′) = cost(f) + 1, contradicting the optimality of f .

This completes the proof. �
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3 Caterpillars with no pair of adjacent trunks

In this section we determine the broadcast independence number of caterpillars with no
pair of adjacent trunks. We first introduce some notation and useful lemmas.

We say that an independent broadcast f of a caterpillar CT is an optimal non-canonical
independent broadcast on CT if

(i) |V +
f | 6= 2 or f ∗ 6= f ∗

c (f is non-canonical), and

(ii) for every independent broadcast f ′ on CT with |V +
f ′ | 6= 2 or f ′∗ 6= f ∗

c , cost(f) ≥
cost(f ′) (f is optimal among all non-canonical independent broadcasts).

Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1 with no pair of adjacent trunks.
We denote by

λ(CT ) =

i=k∑

i=0

λi

the number of leaves of CT , and by

τ(CT ) = |{i | 1 ≤ i ≤ k − 1 and λi = 0}|

the number of trunks of CT .

We will compute the broadcast independence number of a caterpillar with no pair of
adjacent trunks by counting the number of some specific patterns. More precisely, we
say that a pattern of length p + 1, Π = π0 . . . πp, p ≥ 0, πi ∈ N for every i, 0 ≤ i ≤ p,
occurs in a caterpillar CT = CT (λ0, . . . , λk) if there exists an index i0, 0 ≤ i0 ≤ k − p,
such that CT [i0, i0 + p] = CT (π0, . . . , πp), that is, λi0+j = πj for every j, 0 ≤ j ≤ p.
We will also say that the caterpillar CT contains the pattern Π and that the subgraph
CT (λi0, . . . , λi0+p) of CT is an occurrence of the pattern Π. For instance, the caterpillar
CT (1, 0, 2, 1, 1, 2, 1, 0, 3), depicted on Figure 1, contains once the pattern 211 and twice
the pattern 10.

We now extend the notation for patterns as follows:

• By π+
i , we mean a spine vertex having at least πi pendent neighbors;

• By π−
i , we mean a spine vertex having at most πi pendent neighbors;

• By [πi, we mean that the leftmost stem, v0, has πi pendent neighbors (therefore, a
pattern starting with this symbol must occur on the left end of a caterpillar);

• By πi], we mean that the rightmost stem, vk, has πi pendent neighbors (therefore,
a pattern ending with this symbol must occur on the right end of a caterpillar);
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• By {πi, [}Π (resp. Π{πi, ]}), we mean either the pattern πiΠ (resp. Ππi) or the
pattern [Π (resp. Π]),

• By π0(π1π2)
+rπ3, we mean a maximal pattern of the form

π0π1π2π3 or π0 π1π2 . . . π1π2
︸ ︷︷ ︸

r times, r ≥ 2

π3,

where maximal here means that the subpattern π1π2 is repeated at least once and
as many times as possible.

• By π0(π1π2)
∗rπ3, we mean a maximal pattern of the form

π0π3, π0π1π2π3 or π0 π1π2 . . . π1π2
︸ ︷︷ ︸

r times, r ≥ 2

π3,

where maximal here means that the subpattern π1π2 is repeated as many times as
possible.

We can also combine these notations, so that π+
i ], for instance, denotes that the rightmost

stem vk has at least πi pendent neighbors.

One can check that the caterpillar CT (1, 0, 2, 1, 1, 2, 1, 0, 3) contains once each of the pat-
terns [1, 3], 2+] and 2111+, twice the pattern 0{2, 3}, and thrice the pattern 1+1+1+.
On one other hand, the caterpillar CT (1, 0, 2, 0, 2, 0, 2, 1, 0, 3) contains only once the pat-
tern 1+0(20)+r1+, namely on the sub-caterpillar CT (1, 0, 2, 0, 2, 0, 2) with explicit pattern
1020202.

For any pattern Π and any caterpillar CT , we will denote by #CT (Π) the number of
occurrences of the pattern Π in CT . Moreover, if M is an occurrence of Π in CT , we
define the value

α1(M) = max{0,#M(1)− 1},

that is, the number of stems vi in M with λi = 1 minus 1—or 0 if M1 contains no such
stem—, and the value

α2(M) = α1(M) + #M([1+) + #M(1+]),

that is, α1(M) plus 0, 1 or 2, depending on whether M contains no end-vertex of CT ,
one end-vertex of CT or both end-vertices of CT , respectively.

We then extend the functions α1 and α2 to the whole caterpillar CT by setting

α1(CT ; Π) =
∑

M occurrence of Π

α1(M)

and
α2(CT ; Π) =

∑

M occurrence of Π

α2(M).



On the Broadcast Independence Number of Caterpillars 9

[11+ 1+11+

1+2−(02−)+r1+

02−(02−)∗r]

Figure 2: Sample patterns involved in the definition of β∗(CT )

Finally, for any caterpillar CT , we define the value β∗(CT ) as follows:

β∗(CT ) = λ(CT ) + τ(CT ) + #CT ({1
+, [}1{1+, ]}) + α1(CT ; 1+2−(02−)+r1+)

+ α2(CT ; 02−(02−)∗r0) + α2(CT ; [2−(02−)∗r0) + α2(CT ; 02−(02−)∗r]).

Sample patterns involved in the above formula are illustrated on Figure 2. A pattern with
a line to the left or right hand side of its spine cannot occur at the left or right end of the
caterpillar, respectively. A pattern with a dashed line to the left or right hand side of its
spine can occur at the left or right end of the caterpillar, respectively, or in the middle of
the caterpillar. A dashed edge is an optional edge (used for pattern 2−, corresponding to
a spine vertex with either one or two pendent neighbors).

Let us say that two distinct occurrences of patterns overlap if they share a common vertex.
Due to the specific structure of the patterns used in the above formula (and, in particular,
of the maximality of the number of repetitions of subpatterns of the form Π+r or Π∗r),
we have the following:

Observation 9 In every caterpillar CT of length k ≥ 1,

1. no occurrence of the pattern 02−(02−)∗r0 can overlap with an occurrence of a pattern
{1+, [}1{1+, ]}, 1+2−(02−)+r1+, 02−(02−)∗r0, [2−(02−)∗r0 or 02−(02−)∗r],

2. no occurrence of the pattern [2−(02−)∗r0 can overlap with an occurrence of a pattern
{1+, [}1{1+, ]}, or 1+2−(02−)+r1+,

3. no occurrence of the pattern 02−(02−)∗r] can overlap with an occurrence of a pattern
{1+, [}1{1+, ]} or 1+2−(02−)+r1+,
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4. if two occurrences of the patterns [2−(02−)∗r0 and 02−(02−)∗r] overlap, then CT is
a caterpillar with pattern [2−(02−)∗r].

We first prove that every caterpillar with no pair of adjacent trunks admits an independent
broadcast f with cost(f) = β∗(CT ).

Lemma 10 Every caterpillar CT = CT (λ0, . . . , λk) of length k ≥ 1, with no pair of
adjacent trunks, admits an independent broadcast f with cost(f) = β∗(CT ).

Proof. We will construct a sequence of independent broadcasts f1, . . . , f4, step by step,
such that cost(f4) = β∗(CT ). Each independent broadcast fi, 2 ≤ i ≤ 4, is obtained by
possibly modifying the independent broadcast fi−1 and is such that cost(fi) ≥ cost(fi−1).
Moreover, for each independent broadcast fi, 1 ≤ i ≤ 4, we will have fi(v) = 0 whenever v
is a stem. These modifications are illustrated on Figures 3 and 4, using the same drawing
conventions as in Figure 2. Only useful broadcast values are given in these figures. These
figures should help the reader to see that all the proposed modifications lead to a new
valid independent broadcast.

Step 1. Let f1 be the mapping defined by f1(v) = 1 if v is a pendent vertex or a trunk,
and f1(v) = 0 otherwise. Clearly, f1 is an independent broadcast on CT with

cost(f1) = λ(CT ) + τ(CT ).

Step 2. Let f2 be the mapping defined by f2(v) = 2 if v = ℓ1i for some i, 0 ≤ i ≤ k, such
that (i) λi = 1, (ii) i = 0 or λi−1 ≥ 1, and (iii) i = k or λi+1 ≥ 1, and f2(v) = f1(v)
otherwise (see Figure 3(a)). Again, f2 is an independent broadcast on CT with

cost(f2) = cost(f1) + #CT ({1
+, [}1{1+, ]}).

Step 3. Suppose that CT contains the pattern 1+2−(02−)+r1+, of length 2r + 3, and let
M = CT [i0, i0 + 2r + 2] be the corresponding occurrence of this pattern. We thus have
f2(v) = 1 for every trunk of M and for every pendent neighbor of a stem vertex vj on M

with i0 + 1 ≤ j ≤ i0 + 2r + 1. Hence, the cost of the restriction f ′
2 of f2 to M is

cost(f ′
2) = f ∗

2 (vi0) + λ(M [i0 + 1, i0 + 2r + 1]) + τ(M) + f ∗
2 (vi0+2r+2).

Let f3 be the mapping first defined by f3(v) = f2(v) for every vertex v. We then modify
f3 as follows. If the subgraph M [i0+1, i0+2r+1] contains no stem vertex vi with λi = 1,
we keep f3 = f2. Otherwise, we let

• f3(ℓ
1
i0+1) = 2 if λi0+1 = 1,

• f3(ℓ
1
i0+2r+1) = 2 if λi0+2r+1 = 1,
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1 1

−→

2 1

1 1 1

−→

1 2 1

(a) From f1 to f2

1 1

1

1

1

1 1

−→

1 1

0

3

0

1 1

(b) From f2 to f3, pattern 1+201021+, cost(f ′
3) = cost(f ′

2) + (1− 1)

1 1

1

1

1

1 1

1

1

1

1

−→

1 1

0

3

0

3 0

0

3

0

2

(c) From f2 to f3, pattern 1+2010201011+, cost(f ′
3) = cost(f ′

2) + (3− 1)

Figure 3: Proof of Lemma 10: from f1 to f3
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• f3(ℓ
1
i0+2j+1) = 3 (and f3(ℓ

2
i0+2j+1) = 0 if λi0+2j+1 = 2) for every j, 1 ≤ j ≤ r − 1,

• f3(vi0+2j) = 0 for every j, 1 ≤ j ≤ r,

(see Figure 3(b) and (c)). The cost of the restriction f ′
3 of f3 on M is then

cost(f ′
3) = cost(f ′

2) + max{0,#M [i0+1,i0+2r+1](1)− 1} = cost(f ′
2) + α1(M).

By Observation 9, two occurrences of the pattern 1+2−(02−)+r1+ can only overlap on
their end-vertices. Therefore, doing the above modification for every occurrence of the
pattern 1+2−(02−)+r1+ in M , the so-obtained independent broadcast f3 satisfies

cost(f3) = cost(f2) + α1(CT ).

Step 4. Suppose first that CT contains the pattern 02−(02−)∗r0, of length 2r+3, and let
M = CT [i0, i0+2r+2], i0 ≥ 1, i0+2r+2 ≤ k−1, be the corresponding occurrence of this
pattern. We thus have f2(v) = 1 for every trunk of M and for every pendent neighbor of
a stem vertex vj on M with i0 + 1 ≤ j ≤ i0 +2r+1. Hence, the cost of the restriction f ′

3

of f3 to M is

cost(f ′
3) = f ∗

3 (vi0) + λ(M) + τ(M [i0 + 1, i0 + 2r + 1]) + f ∗
3 (vi0+2r+2).

Let f4 be the mapping first defined by f4(v) = f3(v) for every vertex v. We then modify
f4 as follows. If the subgraph M [i0+1, i0+2r+1] contains no stem vertex vi with λi = 1,
we keep f4 = f3. Otherwise, we let

• f4(ℓ
1
i0+2j+1) = 3 (and f4(ℓ

2
i0+2j+1) = 0 if λi0+2j+1 = 2) for every j, 0 ≤ j ≤ r,

• f4(vi0+2j) = 0 for every j, 0 ≤ j ≤ r,

(see Figure 4(a)). The cost of the restriction f ′
4 of f4 on M is then

cost(f ′
4) = cost(f ′

3) + max{0,#M(1)− 1} = cost(f ′
3) + α2(M).

Suppose now that CT contains the pattern [2−(02−)∗r0, of length 2r + 2, and let M =
CT [0, 2r + 1] be the corresponding occurrence of this pattern. Doing the same type of
modification as above (see Figure 4(b)), the cost of the restriction f ′

4 of f4 on M is then

cost(f ′
4) = cost(f ′

3) + max{0,#M(1)− 1}+ 1 = cost(f ′
3) + α2(M).

Finally, if CT contains the pattern 02−(02−)∗r] and CT is not a caterpillar with pattern
[2−(02−)∗r], the same type of modification leads to the same property.
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1 1

1

1

1

1 1

1

1

1

1

1

−→

0

3 0

0

3

0

3 0

0

3

0

3

0

(a) From f3 to f4, pattern 02010201010, cost(f ′
4) = cost(f ′

3) + (3− 1) + 0

1 1

1

1

1

1 1

1

1

1

1 1

1

−→

3 0

0

3

0

3 0

0

3

0

3 0

0

(b) From f3 to f4, pattern [2010201020, cost(f ′
4) = cost(f ′

3) + (2− 1) + 1

Figure 4: Proof of Lemma 10: from f3 to f4

By Observation 9, no two occurrences of the patterns 02−(02−)∗r0 and [2−(02−)∗r0 (or
02−(02−)∗r0 and 02−(02−)∗r]) can overlap. Therefore, doing the above modification for
every occurrence of these patterns inM , the so-obtained independent broadcast f4 satisfies

cost(f4) = cost(f3) + α2(CT ) = β∗(CT ).

This completes the proof. �

The next lemma shows that if f is an optimal non-canonical independent broadcast on
a caterpillar CT with no pair of adjacent trunks, with cost(f) > 2(diam(CT )− 1), then
there exists an optimal non-canonical independent broadcast f̃ on CT such that the f̃ -
values of the pendent neighbors of v0 and vk only depend on the values of λ0, λ1 and
λk−1, λk, respectively:
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Lemma 11 Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1, with no pair
of adjacent trunks. If f is an optimal non-canonical independent broadcast on CT with
cost(f) > 2(diam(CT )−1), then there exists an optimal non-canonical independent broad-
cast f̃ on CT , thus with cost(f̃) = cost(f), such that, for every i ∈ {0, k}, we have

1. if λi = 1 and λi′ ≥ 1, then f̃(ℓ1i ) = 2,

2. if λi = 1 and λi′ = 0, then f̃(ℓ1i ) = 3,

3. if λi = 2 and λi′ ≥ 1, then f̃(ℓ1i ) = f̃(ℓ2i ) = 1,

4. if λi = 2 and λi′ = 0, then f̃(ℓ1i ) = 3 and f̃(ℓ2i ) = 0,

5. if λi ≥ 3, then f̃(ℓji ) = 1 for every j, 1 ≤ j ≤ λi,

where i′ = 1 if i = 0, or i′ = k − 1 if i = k.

Proof. Note first that if such a broadcast f̃ exists, then, by Lemma 6, f̃(u) = 0 for every
stem u of CT . Therefore, the value of

∑

1≤j≤λi
f̃(ℓji ) cannot be strictly less than the value

claimed in the lemma since otherwise it would contradict the optimality of f̃ .

By symmetry, it is enough to prove the lemma for the pendent neighbors of v0. Let
CT0 = CT (λ0, . . . , λk) be a minimal counterexample, with respect to the subgraph order,
to the lemma. That is, every sub-caterpillar of CT0 satisfies the statement of the lemma
and, for every optimal non-canonical independent broadcast f on CT0 with cost(f) >

2(diam(CT )−1), there is a pendent neighbor, say ℓ10 without loss of generality, of v0 such
that f(ℓ10) = x and x is strictly greater than the value claimed by the lemma (note that,
in case 3, if f(ℓ10) = 2 (resp. 0) and f(ℓ20) = 0 (resp. 2), then we can equivalently assign
the value 1 to both of them). We will prove that such a minimal counterexample cannot
exist.

Let f0 be any such independent broadcast on CT0 for which the value f(ℓ10) = x is minimal.
We thus have x ≥ 3 whenever λ1 > 0 or λ0 ≥ 3 (since in this latter case we can assign
value 1 to each of the at least three pendent neighbors of v0, and thus x = 2 would imply
that f0 is not optimal), and x ≥ 4 whenever λ1 = 0.

Since f0(ℓ
1
0) = x > 1, we have f ∗

0 (vi) = 0 for every i, 1 ≤ i ≤ x − 2, and f0(vx−1) = 0.
Moreover, x− 1 < k since f0 is a non-canonical independent broadcast, and vx−1 cannot
be a trunk, since otherwise we could set f0(ℓ

1
0) = x+1 (recall that, by Lemma 6, f0(vi) = 0

for every stem vi, and thus f0(vx) = 0), contradicting the optimality of f0.

Let now CT1 = (λx−1, . . . , λk) be the caterpillar obtained from CT0 by deleting vertices
v0, . . . , vx−2 and their pendent neighbors (see Figure 5(a)). Note that f0(u) = 0 for every
such deleted vertex u 6= ℓ10. Let f1 denote the restriction of f0 to V (CT1). Since f0(ℓ

1
0) = x,

we get
f1(u) = f0(u) ≤ max{eCT1

(u), dCT0
(u, ℓ10)} ≤ eCT1

(u)
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for every vertex u ∈ V (CT1), so that f1 is an independent broadcast on CT1 by Observa-
tion 4. Moreover, since diam(CT1) = diam(CT0)− x+ 1, we have

cost(f1) = cost(f0)− x > 2(diam(CT0)− 1)− x = 2(diam(CT1)− 1) + x− 2.

Since x > 1, we thus have cost(f1) ≥ 2(diam(CT1)−1). Therefore, since CT0 is a minimal
counterexample, we get that either f1 is a canonical independent broadcast on CT1 or there
exists an optimal non-canonical independent broadcast f ′

1 on CT1 with cost(f ′
1) ≥ cost(f1)

and f ′
1 satisfies the statement of the lemma.

Suppose first that f1 is a canonical independent broadcast. This implies

cost(f1) = 2(diam(CT1)− 1).

Hence,

cost(f0) = cost(f1) + x = 2(diam(CT1)− 1) + x < 2(diam(CT0)− 1),

which contradicts our assumption on cost(f0).

Therefore, there exists an optimal non-canonical independent broadcast f ′
1 on CT1 with

cost(f ′
1) ≥ cost(f1) satisfying the statement of the lemma. If cost(f ′

1) > cost(f1), the
mapping f ′

0 given by f ′
0(u) = f ′

1(u) for every vertex u ∈ V (CT1) and f ′
0(u) = f0(u) for

every vertex u ∈ V (CT0) \ V (CT1), is a non-canonical independent broadcast f ′
0 on CT0

(since x ≥ 3) that contradicts the optimality of f0.

Hence, f1 is optimal and thus satisfies the statement of the lemma. Let f̃1 be the non-
canonical independent broadcast satisfying items 1 to 5 of the lemma, and let

m = max
{
f̃1(ℓ

j
x−1), 1 ≤ j ≤ λx−1

}
.

We consider two cases, depending on whether vx−2 is a stem or not. Recall that vx−2 6= v0,
since x ≥ 3.

1. λx−2 > 0.
Let f ′

0 be the non-canonical independent broadcast on CT0 given by f ′
0(ℓ

1
0) = x− 1,

f ′
0(ℓ

1
x−2) = 2, f ′

0(u) = 0 for every vertex u ∈ V (CT0) \ (V (CT1) ∪ {ℓ10, ℓ
1
x−2}), and

either f ′
0(u) = f̃1(u) for every vertex u ∈ V (CT1), if m ≤ 2 (see Figure 5(b)), or

f ′
0(ℓ

1
x−1) = 2 and f ′

0(u) = f̃1(u) for every vertex u ∈ V (CT1) \ {ℓ1x−1}, if m = 3
(see Figure 5(c)). We then get cost(f ′

0) = cost(f0) + 1 if m ≤ 2, contradicting the
optimality of f0, or cost(f ′

0) = cost(f0) if m = 3, in which case either f ′
0 satisfies

items 1 to 5 of the lemma or contradicts the minimality of x.

2. λx−2 = 0.
If x = 3, then λ1 = 0 which implies x ≥ 4, a contradiction. Hence, we have
x ≥ 4, and thus vx−3 6= v0. Let f ′

0 be the non-canonical independent broadcast
on CT0 given by f ′

0(ℓ
1
0) = x − 2, f ′

0(ℓ
1
x−3) = 2, f ′

0(u) = 0 for every vertex u ∈

V (CT0) \ (V (CT1)∪{ℓ10, ℓ
1
x−3}), and f ′

0(u) = f̃1(u) for every vertex u ∈ V (CT1) (see
Figure 5(d)). We then get cost(f ′

0) = cost(f0), and thus either f ′
0 satisfies items 1

to 5 of the lemma or contradicts the minimality of x.
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This concludes the proof. �

We now consider the internal stems of a caterpillar. The next lemma shows that if f
is an optimal non-canonical independent broadcast on a caterpillar CT with no pair of
adjacent trunks, with cost(f) > 2(diam(CT ) − 1), then there exists an optimal non-
canonical independent broadcast f̃ on CT such that f̃ ∗(vi) > 0 for every internal stem vi
of CT , 1 ≤ i ≤ k − 1.

Lemma 12 Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1, with no pair
of adjacent trunks. If f is an optimal non-canonical independent broadcast on CT with
cost(f) > 2(diam(CT )−1), then there exists an optimal non-canonical independent broad-
cast f̃ on CT , thus with cost(f̃) = cost(f), such that:

1. f̃ satisfies the five items of Lemma 11,

2. for every i, 1 ≤ i ≤ k − 1, if λi > 0, then f̃ ∗(vi) > 0.

Proof. We know by Lemma 11 that there exists an optimal non-canonical independent
broadcast f̃ on CT , with cost(f̃) = cost(f), satisfying the five items of Lemma 11.
Moreover, one suppose that f̃ has been chosen in such a way that V +

f̃
contains the largest

possible number of pendent vertices.

Suppose to the contrary that there exists a vertex vi, 1 ≤ i ≤ k − 1, with λi > 0 and
f̃ ∗(vi) = 0, and that for every j < i, f̃ ∗(vj) > 0 whenever λj > 0. We consider three
cases.

1. i = 1 or i = k − 1.
By symmetry, it suffices to consider the case i = 1. By Lemma 11, we know
that f̃(ℓj0) ≤ 2 for every j, 1 ≤ j ≤ λ0. Therefore, no pendent neighbor of v1
is f̃ -dominated by a pendent neighbor of v0. Let y be the vertex of CT that f̃ -
dominates the pendent neighbors of v1 (note that y is necessarily unique), and g be
the mapping defined as follows. For every vertex u of CT , let

g(u) =







f̃(y)− 1 if u = y,
1 if u = ℓ11,

1 if u 6= ℓ11, u is f̃ -dominated only by y and dCT (u, y) = f̃(y),

f̃(u) otherwise.

We claim that the mapping g is a non-canonical independent broadcast on CT

with cost(g) ≥ cost(f̃). Indeed, all vertices x with dCT (x, y) < f̃(y) that were f̃ -
dominated by y are still g-dominated by y, and all vertices x′ 6= ℓ11 with dCT (x

′, y) =
f̃(y) that were f̃ -dominated only by y are now g-broadcast vertices with g(x′) = 1
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x

v0 v1 vx−1 vk

(a) The sub-caterpillar CT1

x 0 m

v0 vx−2 vx−1

−→

x− 1 2 m

v0 vx−2 vx−1

(b) λx−2 > 0 and m ≤ 2

x 0 3

v0 vx−2 vx−1

−→

x− 1 2 2

v0 vx−2 vx−1

(c) λx−2 > 0 and m = 3

x 0 m

v0 vx−3 vx−2 vx−1

−→

x− 2 2 m

v0 vx−3 vx−2 vx−1

(d) λx−2 = 0

Figure 5: Configurations for the proof of Lemma 11
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(note that since every such x′ was f̃ -dominated only by y, we have g(z) = f̃(z) = 0
for every neighbor z of x′).

Now, if there exists a vertex z which is f̃ -dominated only by y, we get cost(g) ≥
cost(f̃) + 1, contradicting the optimality of f̃ . If no such vertex exists, we get
cost(g) = cost(f̃) and V +

g contains more pendent vertices than V +

f̃
, contrary to our

assumption.

2. i = 2 and λ1 = 0, or i = k − 2 and λk−1 = 0.
By symmetry, it suffices to consider the case i = 2. By Lemma 11, we know that
f̃(ℓj0) ≤ 3 for every j, 1 ≤ j ≤ λ0. Therefore, no pendent neighbor of v2 is f̃ -
dominated by a pendent neighbor of v0. Let y be the (unique) vertex of CT that
f̃ -dominates the pendent neighbors of v2 (note that we necessarily have f̃(y) ≥ 2).

If y = v3 and f̃(v3) = 3 (since f̃ ∗(v0) > 0, we necessarily have f̃(v3) ≤ 3), we define
the mapping g as follows. For every vertex u of CT , let

g(u) =







0 if u = v3,
3 if u = ℓ12,

1 if u 6= ℓ12, u is f̃ -dominated only by v3 and dCT (u, y) = 2,

f̃(u) otherwise.

Otherwise (including the case y = v3 and f̃(v3) = 2), the mapping g is defined by

g(u) =







f̃(y)− 2 if u = y,
2 if u = ℓ12,

1 if u 6= ℓ12, u is f̃ -dominated only by y and dCT (u, y) = f̃(y)− 1,

f̃(u) otherwise,

for every vertex u of CT .

In both cases, the mapping g is again a non-canonical independent broadcast on
CT with cost(g) ≥ cost(f̃). Indeed, all vertices x with dCT (x, y) < f̃(y) − 1 that
were f̃ -dominated by y are g-dominated by ℓ21 (if y = v3) or still g-dominated by
y (if y 6= v3), and all vertices x′ 6= ℓ12 with f̃(y) − 1 ≤ dCT (x

′, y) ≤ f̃(y) that were
f̃ -dominated only by y are now either g-broadcast vertices (if dCT (x

′, y) = f̃(y)−1)
or g-dominated by a vertex x′′ with dCT (x

′′, y) = f̃(y)− 1 and g(x′′) = 1.

We then get a contradiction as in Case 1.

3. 2 < i < k − 2, or i = 2 and λ1 > 0, or i = k − 2 and λk−1 > 0.
In that case, we have f̃ ∗(vj) > 0 for every vertex vj with j < i and λj > 0. Note
also that we have at least two such vertices vj with j < i and λj > 0.

By symmetry, it suffices to consider the cases 2 < i < k−2, and i = 2 (with λ1 > 0).
We consider three subcases.

(a) Suppose first that the pendent neighbors of vi are f̃ -dominated only by a vertex
y = vj0 or y = ℓk0j0 with j0 < i and 1 ≤ k0 ≤ λj0. Observe that the pendent

neighbors of vi cannot be f̃ -dominated by two such vertices, say y and y′, since
we would have dCT (y, y

′) < dCT (y, ℓ
1
i ) so that f̃ would not be independent.
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Since f̃ ∗(vj) > 0 for every j < i such that λj > 0, we necessarily have, by
Lemma 6, either y is a pendent neighbor of vi−1, if λi−1 > 1, or a pendent
neighbor of vi−2, if λi−1 = 0. Moreover, since f̃ ∗(vj) > 0 for every j < i such
that λj > 0, and since we have at least two such vertices, we necessarily have
f̃(y) ≤ 3. This implies in particular λi−1 > 0, as otherwise we would have
f̃(y) ≤ 3 and dCT (y, ℓ

1
i ) = 4, contradicting the fact that y f̃ -dominates ℓ1i , and

thus y is a pendent neighbor of vi−1.

Let now g be the mapping defined as follows. For every vertex u of CT , let

g(u) =







f̃(y)− 1 if u = y,
1 if u = ℓ1i ,

1 if u 6= ℓ1i , u is f̃ -dominated only by y and dCT (u, y) = f̃(y),

f̃(u) otherwise.

Again, the mapping g is a non-canonical independent broadcast on CT with
cost(g) ≥ cost(f̃). Indeed, all vertices x with dCT (x, y) < f̃(y) that were
f̃ -dominated by y are still g-dominated either by y, and all vertices x′ 6= ℓ1i
with dCT (x

′, y) = f̃(y) that were f̃ -dominated only by y are now g-broadcast
vertices.

We then get a contradiction as in Cases 1 and 2.

(b) Suppose now that the pendent neighbors of vi are f̃ -dominated only by a vertex
y = vj0 (with λj0 = 0) or y = ℓk0j0 (1 ≤ k0 ≤ λj0), with j0 > i. Observe that,
using the same argument as in Case (a), such a vertex y must be unique.

Moreover, we necessarily have f̃(y) ≥ 2.

If λi−1 = 0, we consider two cases, as we did in Case 2. If y = vi+1 and
f̃(vi+1) = 3, we define the mapping g by

g(u) =







0 if u = vi+1,
3 if u = ℓ1i ,

1 if u 6= ℓ1i , u is f̃ -dominated only by y and dCT (u, y) = 2,

f̃(u) otherwise,

for every vertex u of CT . Otherwise, the mapping g is defined by

g(u) =







f̃(y)− 2 if u = y,
2 if u = ℓ1i ,

1 if u 6= ℓ1i , u is f̃ -dominated only by y and dCT (u, y) = f̃(y)− 1,

f̃(u) otherwise,

for every vertex u of CT .

Otherwise, that is, λi−1 > 0, we define the mapping g as follows. For every
vertex u of CT , let

g(u) =







f̃(y)− 1 if u = y,
1 if u = ℓ1i ,

1 if u 6= ℓ1i , u is f̃ -dominated only by y and dCT (u, y) = f̃(y),

f̃(u) otherwise.
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Again, using similar arguments, in each case the above-defined mapping is a
non-canonical independent broadcast on CT with cost(g) ≥ cost(f̃) and the
contradiction arises as in Cases 1 and 2.

(c) Suppose finally that the pendent neighbors of vi are f̃ -dominated both by a
vertex y1 = vj1 or y1 = ℓk1j1 with j1 < i and 1 ≤ k1 ≤ λj1, and by a vertex

y2 = vj2 or y2 = ℓk2j2 with j2 > i and 1 ≤ k2 ≤ λj2 (again, both y1 and y2 must
be unique). In that case, as discussed in Case (a) above, we necessarily have
λi−1 > 0. Moreover, we necessarily have f̃(y1) = 3 and f̃(y2) ≥ 2.

Let now g be the mapping defined as follows. For every vertex u of CT , let

g(u) =







f̃(y1)− 1 if u = y1,

f̃(y2)− 1 if u = y2,
2 if u = ℓ1i ,

1 if u 6= ℓ1i , u is f̃ -dominated only by y2 and dCT (u, y2) = f̃(y2),

f̃(u) otherwise.

Note here that no vertex at distance f̃(y1) from y1 can be f̃ -dominated only
by y1. Indeed, suppose that such a vertex, say w, exists. Clearly, w cannot be
“to the left of vi” since this would imply w = vi−3 and λi−2 = 0, but in that
case w is also f̃ -dominated by at least one of its pendent neighbors. On the
other hand, w cannot be “to the right of vi” since in that case w would also
be f̃ -dominated by y2.

Again, using similar arguments, the above-defined mapping is a non-canonical
independent broadcast on CT with cost(g) ≥ cost(f̃) and the contradiction
arises as in Cases 1 and 2.

We thus get a contradiction in each case. This completes the proof. �

Our aim now is to prove that if f is an optimal non-canonical independent broadcast on
a caterpillar CT with no pair of adjacent trunks, with cost(f) > 2(diam(CT )− 1), then
cost(f) = cost(β∗) (Lemma 16 below). We first prove that for every such broadcast f ,
f(vi) ≤ 1 for every trunk vi. This easily follows from Lemma 12.

Lemma 13 Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1, with no pair
of adjacent trunks. If f is an optimal non-canonical independent broadcast on CT with
cost(f) > 2(diam(CT )−1), then there exists an optimal non-canonical independent broad-
cast f̃ on CT , thus with cost(f̃) = cost(f), such that:

1. f̃ satisfies the two items of Lemma 12,

2. for every i, 1 ≤ i ≤ k − 1, if λi = 0, then f̃ ∗(vi) ≤ 1.
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Proof. We know by Lemma 12 that there exists an optimal non-canonical independent
broadcast f̃ on CT satisfying the two items of Lemma 12, so that, in particular, f̃ ∗(vj) > 0
for every stem vj, 0 ≤ j ≤ k. Since CT has no pair of adjacent trunks, and f̃ is
independent, we thus necessarily have f̃ ∗(vi) ≤ 1 for every trunk vi, 1 ≤ i ≤ k − 1. �

Finally, the next lemma will show that the cost of any optimal non-canonical independent
broadcast on a caterpillar CT of length k ≥ 1 with no pair of adjacent trunks cannot
exceed the value β∗(CT ).

We first introduce a few more notation. Let CT be a caterpillar of length k ≥ 1, with no
pair of adjacent trunks. We denote by σ a sequence of ℓ consecutive spine vertices in CT ,
that is, σ = vi . . . vi+ℓ−1, with ℓ ≤ k + 1 and 0 ≤ i ≤ k − ℓ+ 1. For such a given sequence
σ = vi . . . vi+ℓ−1, we denote by tσ the number of trunks in σ, that is,

tσ = |{vj | i ≤ j ≤ i+ ℓ− 1 and λj = 0}| .

If f is an independent broadcast on CT , we then denote by f ∗(σ) the weight of σ, that
is,

f ∗(σ) =
∑

0≤j≤ℓ−1

f ∗(vi+j).

Lemma 14 Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1, with no pair of
adjacent trunks, and f be an optimal non-canonical independent broadcast on CT with
cost(f) > 2(diam(CT ) − 1). Then there exists an optimal non-canonical independent
broadcast f̃ on CT , thus with cost(f̃) = cost(f), such that:

1. f̃ satisfies the two items of Lemma 13.

2. For every i, 0 ≤ i ≤ k, if λi ≥ 3, then f̃ ∗(vi) ≤ λi.

3. If vava+1, 0 ≤ a < k, is an occurrence of the pattern 1+2− (resp. of the pattern
2−1+), then f̃ ∗(va+1) ≤ 2 (resp. f̃ ∗(va) ≤ 2).

4. If vaσvb is an occurrence of the pattern 1+2−(02−)+r1+, then f̃ ∗(σ) ≤ 3tσ + 2 if
vaσvb is an occurrence of the pattern 1+2(02)+r1+, and f̃ ∗(σ) ≤ 3tσ + 1 otherwise.

5. If σ is an occurrence of the pattern 02−(02−)∗r0, then f̃ ∗(σ) ≤ 3tσ −2 if vaσvb is an
occurrence of the pattern 02(02)∗r0, and f̃ ∗(σ) ≤ 3tσ − 3 otherwise.

6. If σ is an occurrence of the pattern [2−(02−)∗r0 or of the pattern 02−(02−)∗r], then
f̃ ∗(σ) ≤ 3tσ.

Proof. We consider the six items of the lemma.
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1. We know by Lemma 13 that there exists an optimal non-canonical independent
broadcast f̃ on CT satisfying the two items of Lemma 13, so that, in particular,
f̃ ∗(vi) > 0 for every stem vi, 0 ≤ i ≤ k and f̃ ∗(vj) ≤ 1 for every trunk vj , 1 ≤ j ≤
k − 1. We thus assume for all following items that such an optimal non-canonical
independent broadcast f̃ on CT has been chosen.

2. Suppose to the contrary that there exists some i, 0 ≤ i ≤ k, with f̃ ∗(vi) > λi ≥
3. This implies that vi has exactly one pendent neighbor, say ℓ1i without loss of
generality, which is an f̃ -broadcast vertex. Since f̃(ℓ1i ) ≥ 4, we necessarily have
a stem v with dCT (vi, v) ≤ 2 and f̃ ∗(v) = 0, contradicting our assumption that f̃

satisfies Lemma 12.

3. Let vava+1, 0 ≤ a < k, be an occurrence of the pattern 1+2− (the case 2−1+ is similar,
by symmetry). By Lemmas 6 and 12, we now that f̃ ∗(va) > 0 and f̃(va) = 0. This
clearly implies f̃ ∗(va+1) ≤ 2.

4. Let vaσvb = vivi+1 . . . vi+2r+2 be an occurrence of the pattern 1+2(02)+r1+, for some
i, 0 ≤ i ≤ k − 2r − 2. We thus have tσ = r. Since f̃ satisfies Lemma 13, we have
f̃ ∗(vi) > 0, f̃ ∗(vi+2r+2) > 0, f̃ ∗(vi+2j+1) > 0 for every j, 0 ≤ j ≤ r, and f̃ ∗(vi+2j) ≤ 1
for every j, 1 ≤ j ≤ r. This implies

f̃ ∗(vi+1) ≤ 2, f̃ ∗(vi+2r+1) ≤ 2, and f̃ ∗(vi+2j+1) ≤ 3 for every j, 1 ≤ j ≤ r−1. (1)

We consider three subcases, according to the number of trunks in σ that are broad-
cast vertices.

(a) f̃(vi+2j) = 1 for every j, 1 ≤ j ≤ r.
In that case, every pendent vertex in σ is an f̃ -broadcast vertex, with f̃ -value
1. This gives

f̃ ∗(σ) = λ(σ) + τ(σ) ≤ 2(r + 1) + r = 3r + 2 = 3tσ + 2,

if vaσvb is an occurrence of the pattern 1+2(02)+r1+, and

f̃ ∗(σ) = λ(σ) + τ(σ) ≤ 1 + 2r + r = 3r + 1 = 3tσ + 1,

otherwise (since we have at least one stem in σ with f̃ -value 1).

(b) f̃(vi+2j) = 0 for every j, 1 ≤ j ≤ r.
In that case, by (1), we get

f̃ ∗(σ) ≤ 2 + 3(r − 1) + 2 = 3r + 1 = 3tσ + 1.

(c) Not all trunks in σ have the same f̃ -value.
Suppose that f̃ has been chosen in such a way that the number of trunks in σ

with f̃ -value 0 is maximal. In that case, σ contains two consecutive trunks, say
vi+2j0 and vi+2j0+2, 1 ≤ j0 ≤ r−1, with f̃(vi+2j0) = 0 and f̃(vi+2j0+2) = 1, with-
out loss of generality (by symmetry). This implies f̃ ∗(vi+2j0+1) = λi+2j0+1 ≤ 2.
We can then modify f̃ by setting f̃(vi+2j0) = f̃(vi+2j0+2) = 0, f̃(ℓ1i+2j0+1) = 3

(and f̃(ℓ2i+2j0+1) = 0 if λi+2j0+1 = 2), contradicting our assumption on the max-

imality of the number of trunks with f̃ -value 0. Therefore, this case cannot
occur and we are done.
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5. The proof uses the same ideas as the proof of the previous case.

Let σ = vivi+1 . . . vi+2r+2 be an occurrence of the pattern 02−(02−)∗r0, for some i,
1 ≤ i ≤ k − 2r − 3. We thus have tσ = r + 2. Since f̃ satisfies Lemma 13, we have

0 < f̃ ∗(vi+2j+1) ≤ 3 for every j, 0 ≤ j ≤ r, (2)

and
f̃ ∗(vi+2j) ≤ 1 for every j, 0 ≤ j ≤ r + 1. (3)

We consider three subcases, according to the number of trunks in σ that are broad-
cast vertices.

(a) f̃(vi+2j) = 1 for every j, 0 ≤ j ≤ r + 1.
In that case, every pendent vertex in σ is an f̃ -broadcast vertex, with f̃ -value
1. This gives

f̃ ∗(σ) = λ(σ) + τ(σ) ≤ 2(r + 1) + r + 2 = 3r + 4 = 3tσ − 2,

if σ is an occurrence of the pattern 02(02)∗r0, and

f̃ ∗(σ) = λ(σ) + τ(σ) ≤ 1 + 2r + r + 2 = 3r + 3 = 3tσ − 3,

otherwise (since we have at least one stem in σ with f̃ -value 1).

(b) f̃(vi+2j) = 0 for every j, 0 ≤ j ≤ r + 1.
In that case, by (2) and (3), we get

f̃ ∗(σ) ≤ 3(r + 1) = 3r + 3 = 3tσ − 3.

(c) Not all trunks in σ have the same f̃ -value.
Suppose that f̃ has been chosen in such a way that the number of trunks in σ

with f̃ -value 0 is maximal. In that case, σ contains two consecutive trunks, say
vi+2j0 and vi+2j0+2, 0 ≤ j0 ≤ r, with f̃(vi+2j0) = 0 and f̃(vi+2j0+2) = 1, without
loss of generality (by symmetry). This implies f̃ ∗(vi+2j0+1) = λi+2j0+1 ≤ 2.
We can then modify f̃ by setting f̃(vi+2j0) = f̃(vi+2j0+2) = 0, f̃(ℓ1i+2j0+1) = 3

(and f̃(ℓ2i+2j0+1) = 0 if λi+2j0+1 = 2), contradicting our assumption on the

maximality of the number of trunks with f̃ -value 0. Therefore, this case cannot
occur and we are done.

6. Let v0 . . . v2r+1 be an occurrence of the pattern [2−(02−)∗r0 (the case 02−(02−)∗r]
is similar, by symmetry). We first prove that for every i, 0 ≤ i ≤ r, f̃ ∗(v2i) +
f̃ ∗(v2i+1) ≤ 3. By Lemma 13, we know that f̃(v2i+1) ≤ 1. If f̃(v2i+1) = 1, we then
have f̃(ℓj2i) ≤ 1 for every pendent neighbor ℓ

j
2i of v2i, and thus f̃ ∗(v2i) ≤ λ2i ≤ 2.

On the other hand, if f̃(v2i+1) = 0, we have f̃ ∗(v2i) ≤ 3 (which implies f̃(ℓj2i) = 3
for a pendent neighbor ℓ

j
2i of v2i) since otherwise we would have f̃ ∗(v2i+2) = 0,

contradicting Lemma 12. In both cases, we thus get the desired inequality.

Since σ contains exactly r + 1 = tσ distinct pairs of vertices of the form (v2i, v2i+1),
we get

f̃ ∗(σ) =
i=r∑

i=0

(

f̃ ∗(v2i) + f̃ ∗(v2i+1)
)

≤ 3(r + 1) = 3tσ.
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This completes the proof. �

The following lemma states that Lemma 14 covers all possible caterpillars that admit a
non-canonical independent broadcast with sufficiently large cost.

Lemma 15 If CT = CT (λ0, . . . , λk) is a caterpillar of length k ≥ 1, with no pair of
adjacent trunks, such that there exists an optimal non-canonical independent broadcast f
on CT with cost(f) > 2(diam(CT )−1), then Lemma 14 gives an upper bound on cost(f).

Proof. Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1, with no pair of adjacent
trunks, f be an optimal non-canonical independent broadcast on CT with cost(f) >

2(diam(CT )− 1), and vi, 0 ≤ i ≤ k, a spine vertex of CT .

If λi ≥ 3, then f ∗(vi) = λi by item 5 of Lemma 11, and thus by item 1 of Lemma 14.

If λi = 0, then f ∗(vi) ≤ 1 by item 2 of Lemma 13, and thus by item 1 of Lemma 14.

Suppose now that 1 ≤ λi ≤ 2. If i = 0 or i = k, then f ∗(vi) ≤ 3 by items 1 to 4 of
Lemma 11, and thus by item 1 of Lemma 14. We assume now that 1 ≤ i ≤ k − 1. If
λi−1 > 0 or λi+1 > 0, then f ∗(vi) ≤ 2 by item 3 of Lemma 14.

The remaining case is thus 1 ≤ i ≤ k − 1, λi−1 = 0 and λi+1 = 0. We consider the set of
all occurrences of a pattern, in which 0’s and 2−’s alternate, that contain vertices vi−1, vi
and vi+1. Let σ = vava+1 . . . vb, 0 ≤ a ≤ i− 1 < i+1 ≤ b ≤ k be such an occurrence with
maximal length. Note here that we necessarily have va 6= vi and vb 6= vi. We consider
three cases.

1. λa = λb = 0.
By the maximality of σ, we necessarily have λa−1 ≥ 3 and λb+1 ≥ 3. Therefore, the
value of f ∗(σ) is bounded by item 5 of Lemma 14.

2. λa = 0 and λb > 0 (the case λa > 0 and λb = 0 is similar, by symmetry).
By the maximality of σ, we necessarily have λa−1 ≥ 3 and either b = k, or b < k

and λb+1 ≥ 1. If b = k, then the value of f ∗(σ) is bounded by item 6 of Lemma 14.
If b < k and λb+1 ≥ 1, then f ∗(va . . . vb−1) is bounded by item 5 of Lemma 14.

3. λa > 0 and λb > 0.
By the maximality of σ, we necessarily have (i) either a = 0, or a > 0 and λa−1 ≥ 1,
and (ii) either b = k, or b < k and λb+1 ≥ 1.

If a > 0 and b < k, then the value of f ∗(σ) is bounded by item 4 of Lemma 14.

If a = 0 and b < k (the case a > 0 and b = k is similar, by symmetry), then the
value of f ∗(va . . . vb−1) is bounded by item 6 of Lemma 14.
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Finally, if a = 0 and b = k, the caterpillar CT has pattern 2−(02−)+r. In that
case, we have diam(CT ) = 2r + 2 and thus 2(diam(CT ) − 1) = 4r + 2. But by
Lemmas 12 and 13 (as discussed in the proof of item 6 of Lemma 14), we have
f ∗(vj)+f ∗(vj+1) ≤ 3 for every j, 0 ≤ j ≤ 2r−2. Moreover, by item 2 of Lemma 11,
we have f ∗(v2r) = 3. Therefore, f ∗(CT ) ≤ 3r + 3 ≤ 4r + 2 = 2(diam(CT ) − 1).
This contradicts our assumption on the value of cost(f), and thus this case cannot
occur.

Therefore, in all cases, either f ∗(vi) or f
∗(σ) for an occurrence σ of a pattern containing

vi is bounded by some item of Lemma 14. This concludes the proof. �

Using Lemmas 14 and 15, we can now prove that no optimal non-canonical independent
broadcast f on CT with cost(f) > 2(diam(CT )− 1) and cost(f) > β∗(CT ) can exist.

Lemma 16 Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1, with no pair of
adjacent trunks, and f be an optimal non-canonical independent broadcast on CT with
cost(f) > 2(diam(CT )− 1). We then have cost(f) ≤ β∗(CT ).

Proof. Let us denote by f4 the non-canonical independent broadcast on CT constructed
in the proof of Lemma 10, thus with cost(f4) = β∗(CT ).

By considering the four steps involved in the construction of f4, it clearly appears that
f4 satisfies the five items of Lemma 11, item 2 of Lemma 12 and item 2 of Lemma 13.
Therefore, f4 satisfies item 1 of Lemma 14. Moreover, if vi is a trunk that does not appear
in any pattern considered in Lemma 14, then f4(vi) = 1. Indeed, the f4-value of vi is set
to 1 in step 1 of Lemma 10 and is not modified in steps 2 to 4.

We now prove that f4 satisfies the five last items of Lemma 14 and that, in each case,
the upper bound is attained. We will refer to steps 1 to 4 of the proof of Lemma 10 and
to the corresponding intermediate independent broadcasts f1 to f3. Recall first that in
step 1, every trunk and every pendent vertex is assigned the value 1.

1. Item 2 of Lemma 14.
If vi is a stem with λi ≥ 3, the value of its pendent neighbors is not modified in
steps 2 to 4. Therefore, we get f ∗

4 (vi) = f ∗
1 (vi) = λi for every such vi.

2. Item 3 of Lemma 14.
Let vava+1, 0 ≤ a < k, be an occurrence of the pattern 1+2− (the case 2−1+ is
similar, by symmetry). Note here that if va+1 is the leftmost vertex of an occurrence
of the pattern 1+2(02)+r1+, then the value of its pendent neighbors is not modified
in step 3.

If λa+1 = 1, then, in step 2, the value of ℓ1a+1 is set to 2 and not modified in step 4.
If λa+1 = 2, then the value of the pendent neighbors of va+1 is not modified in steps
2 and 4. Therefore, f ∗

4 (va+1) = 2 in both cases.
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3. Item 4 of Lemma 14.
Let vaσvb = vivi+1 . . . vi+2r+2 be an occurrence of the pattern 1+2−(02−)+r1+, for
some i, 0 ≤ i ≤ k − 2r − 2. In that case, we have tσ = r.

If vaσvb is an occurrence of the pattern 1+2(02)+r1+, the value of the vertices of σ
are not modified in steps 2 to 4. Therefore, we have f ∗

4 (σ) = f ∗
1 (σ) = 2(r+1)+ r =

3r + 2 = 3tσ + 2.

Suppose now that σ contains at least one stem having only one pendent neighbors.
In step 3, the value of ℓ1i+1 is set to 2 if λi+1 = 1, the value of ℓ1i+2r+1 is set to 2 if
λi+2r+1 = 1, the value of ℓ1i+2j+1, 1 ≤ j ≤ r − 1, is set to 3 (and the value of ℓ2i+2j+1

is set to 0 if λi+2j+1 = 2), and the value of every trunk is set to 0. We thus get

f ∗
4 (σ) = f ∗

3 (σ) = 2 + 2 + 3(r − 1) = 3r + 1 = 3tσ + 1.

4. Item 5 of Lemma 14.
Let σ = vivi+1 . . . vi+2r+2 be an occurrence of the pattern 02−(02−)∗r0, for some i,
1 ≤ i ≤ k − 2r − 3. In that case, we have tσ = r + 2.

If σ is an occurrence of the pattern 02(02)∗r0, the value of the vertices of σ are not
modified in steps 2 to 4. Therefore, we have f ∗

4 (σ) = f ∗
1 (σ) = 2(r + 1) + r + 2 =

3r + 4 = 3tσ − 2.

Suppose now that σ contains at least one stem having only one pendent neighbor.
In step 3, the value of ℓ1i+2j+1, 0 ≤ j ≤ r, is set to 3 (and the value of ℓ2i+2j+1 is set
to 0 if λi+2j+1 = 2), and the value of every trunk is set to 0. We thus get

f ∗
4 (σ) = f ∗

3 (σ) = 3(r + 1) = 3r + 3 = 3tσ − 3.

5. Item 6 of Lemma 14.
Let v0 . . . v2r+1 be an occurrence of the pattern [2−(02−)∗r0 (the case 02−(02−)∗r] is
similar, by symmetry). In that case, we have tσ = r + 1.

In step 3, the value of ℓ12j , 0 ≤ j ≤ r, is set to 3 (and the value of ℓ22j is set to 0 if
λ2j = 2), and the value of every trunk is set to 0. We thus get

f ∗
4 (σ) = f ∗

3 (σ) = 3(r + 1) = 3r + 3 = 3tσ.

By Lemma 14, we know that there exists an optimal non-canonical independent broadcast
f̃ with cost(f̃) = cost(f) which satisfies all items of Lemma 14. We have proved that
the non-canonical independent broadcast f4 constructed in the proof of Lemma 10 also
satisfies all items of Lemma 14. Thanks to Lemma 15, we thus have

cost(f) = cost(f̃) ≤ cost(f4) = β∗(CT ),

which completes the proof. �

We are now able to state our main result, which determines the broadcast independent
number of any caterpillar with no pair of adjacent trunks.
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Theorem 17 Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1, with no pair of
adjacent trunks. The broadcast independence number of CT is then given by:

βb(CT ) = max
{
2(diam(CT )− 1), β∗(CT )

}
.

Proof. We know by Observation 1 that βb(CT ) ≥ 2(diam(CT )− 1) and we already ob-
served that the canonical independent broadcast fc on CT satisfies cost(fc) = 2(diam(CT )−
1). According to Lemma 10, it is thus enough to prove that for any optimal non-canonical
independent broadcast f on CT with cost(f) > 2(diam(CT ) − 1), cost(f) ≤ β∗(CT ),
which directly follows from Lemma 16. �

In several cases, the value of β∗(CT ) has a simple expression. Consider for instance a
caterpillar CT , of length k ≥ 1, having no trunk. We then have β∗(CT ) = λ(CT ) +
n1(CT ), where n1 stands for the number of spine vertices having exactly one pendent
vertex. Since λ(CT ) ≥ n1(CT )+2(k+1−n1(CT )) = 2k+2−n1(CT ) (spine vertices have
either one or at least two pendent neighbors), we get β∗(CT ) ≥ 2k+2, with equality if and
only if CT contains no stem with at least three pendent neighbors. Since 2(diam(CT )−
1) = 2k + 2, we get the following corollary of Theorem 17.

Corollary 18 Let CT be a caterpillar of length k ≥ 1 having no trunk. We then have
βb(CT ) = 2k + 2 = 2(diam(CT ) − 1) if CT has no stem with at least three pendent
neighbors, and βb(CT ) = λ(CT ) + n1(CT ) otherwise.

Moreover, thanks to Observation 4, we can also give the broadcast independent number
of caterpillars having adjacent trunks but not stem with at least three pendent neighbors.

Corollary 19 Let CT be a caterpillar of length k ≥ 1. If CT has no stem with at least
three pendent neighbors, then βb(CT ) = 2k + 2 = 2(diam(CT )− 1).

Finally, note that if every stem in a caterpillar CT of length k ≥ 1 with no pair of adjacent
trunks has at least three pendent neighbors, then no pattern involved in the definition of
β∗(CT ) can appear in CT . In that case, since τ(CT ) ≤

⌊
k
2

⌋
and λ(CT ) ≥ 3

(⌈
k
2

⌉
+ 1

)
,

we get
β∗(CT ) = λ(CT ) + τ(CT ) > 2k + 2 = 2(diam(CT )− 1).

Therefore, we have:

Corollary 20 Let CT be a caterpillar of length k ≥ 1, with no pair of adjacent trunks.
If all stems in CT have at least three pendent neighbors, then βb(CT ) = λ(CT ) + τ(CT ).
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