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Abstract: An incidence of a graph G is a pair (v, e) where v is a vertex of G
and e is an edge of G incident with v. Two incidences (v, e) and (w, f) of G
are adjacent whenever (i) v = w, or (ii) e = f , or (iii) vw = e or f .

An incidence p-colouring of G is a mapping from the set of incidences of G
to the set of colours {1, . . . , p} such that every two adjacent incidences re-
ceive distinct colours. Incidence colouring has been introduced by Brualdi and
Quinn Massey in 1993 and, since then, studied by several authors.

In this paper, we introduce and study the list version of incidence colouring.
We determine the exact value of – or upper bounds on – the incidence choice
number of several classes of graphs, namely square grids, Halin graphs, cac-
tuses and Hamiltonian cubic graphs.

Keywords: Incidence colouring; Incidence list colouring; List colouring;
Square grid;Halin graph; Hamiltonian cubic graph.
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1 Introduction

All graphs considered in this paper are simple and loopless undirected graphs. We denote
by V (G) and E(G) the set of vertices and the set of edges of a graph G, respectively, by
∆(G) the maximum degree of G, and by distG(u, v) the distance between vertices u and
v in G.

A (proper) colouring of a graph G is a mapping from V (G) to a finite set of colours such
that adjacent vertices are assigned distinct colours. Let L be a list assignment of G, that
is, a mapping that assigns to every vertex v of G a finite list L(v) of colours. The graph G
is L-list colourable if there exists a proper colouring λ of G satisfying λ(v) ∈ L(v) for every
vertex v of G. The graph G is k-list colourable, or k-choosable, if, for every list assignment
L with |L(v)| = k for every vertex v, G is L-list colourable. The choice number ch(G)
of G is then defined as the smallest integer k such that G is k-choosable. List colouring
was independently introduced by Vizing [17] and Erdős, Rubin and Taylor [4] (see the
surveys by Alon [1], Tuza [16], Kratochv̀ıl, Tuza and Voigt [9], or the monography by
Chartrand and Zhang [3, Section 9.2]).

An incidence of a graph G is a pair (v, e) where v is a vertex of G and e is an edge of G
incident with v. Two incidences (v, e) and (w, f) of G are adjacent whenever (i) v = w,
or (ii) e = f , or (iii) vw = e or f . An incidence p-colouring of G is a mapping from
the set of incidences of G to the set of colours {1, . . . , p} such that every two adjacent
incidences receive distinct colours. The smallest p for which G admits an incidence p-
colouring is the incidence chromatic number of G, denoted by χi(G). Incidence colourings
were first introduced and studied by Brualdi and Quinn Massey [2]. Incidence colourings
of various graph families have attracted much interest in recent years, see for instance
[5, 6, 8, 10, 15, 18, 19].

The list version of incidence colouring is defined in a way similar to the case of ordinary
proper vertex colouring. We thus say that a graph G is incidence k-choosable, if, for
every list assignment L with |L(v, e)| = k for every incidence (v, e), G is L-list incidence
colourable. The incidence choice number of G, denoted by chi(G), is then defined as the
smallest integer k such that G is incidence k-choosable.

Our paper is organised as follows. We first give some preliminary results in Section 2.
We then study the incidence choice number of square grids in Section 3, of Halin graphs
in Section 4, of cactuses in Section 5, and of Hamiltonian cubic graphs in Section 6. We
finally propose some directions for future research in Section 7.

2 Preliminary results

We list in this section some basic results on the incidence choice number of various graph
classes. Note first that the inequality chi(G) ≥ χi(G) obviously holds for every graph G,
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and that whenever G is not connected, χi(G) (resp. chi(G)) equals the maximum value
of χi(C) (resp. of chi(C)), taken over all connected components C of G. Therefore, when
studying the incidence chromatic number or the incidence choice number of special graph
classes, it is enough to consider the case of connected graphs.

We start by introducing a few notation. With any graph G, we associate the incidence
graph of G, denoted by IG, whose vertices are the incidences of G, two incidences being
joined by an edge whenever they are adjacent. Clearly, every incidence colouring of G is
nothing but a proper vertex colouring of IG, so that χi(G) = χ(IG) and chi(G) = ch(IG).
Note also that for every subgraph H of G, IH is a subgraph of IG. Hence we have:

Observation 1 For every subgraph H of a graph G, χi(H) ≤ χi(G) and chi(H) ≤ chi(G).

For every vertex v in a graph G, we denote by A−(v) the set of incidences of the form
(v, vu), and by A+(v) the set of incidences of the form (u, uv) (see Figure 1). We thus
have |A−(v)| = |A+(v)| = deg(v) for every vertex v. For every vertex v, the incidences in
A−(v) are called the internal incidences of v, and the incidences in A+(v) are called the
external incidences of v. The following observation will be useful.

Observation 2 For every incidence (v, vu), the set of incidences that are adjacent to
(v, vu) is A−(v) ∪ A+(v) ∪ A−(u), whose cardinality is 2 degG(v) + degG(u)− 2.

Note also that all incidences in A−(v) must be assigned pairwise distinct colours in every
incidence colouring of G and that the colour of any incidence in A+(v) must be distinct
from the colours assigned to the incidences of A−(v). Moreover, since every incidence has
at most 3∆(G)− 2 adjacent incidences by Observation 2 (see Figure 1), we get:

Proposition 3 For every graph G, ∆(G) + 1 ≤ χi(G) ≤ chi(G) ≤ 3∆(G)− 1.

It was proved in [4, 17] that the choice number also satisfies a Brooks-like theorem, that
is, the inequality ch(G) ≤ ∆(G) holds for every graph G which is neither complete nor an
odd cycle. Observe that whenever ∆(G) ≥ 2, the incidence graph IG contains a triangle
(induced by three incidences of the form (v, vu1), (v, vu2) and (u1, u1v), u1 6= u2) and
is non-complete (two incidences of the form (u1, u1v) and (u2, u2v), u1 6= u2, are neither
adjacent). On the other hand, if ∆(G) = 1, then G is a union of K2’s, and thus incidence
2-colourable. Hence, Proposition 3 can be slightly improved as follows:

Proposition 4 For every graph G with ∆(G) ≥ 2, ∆(G) + 1 ≤ χi(G) ≤ chi(G) ≤
3∆(G)− 2.
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Figure 1: Adjacent incidences.

Recall that for every integer p ≥ 1, the pth-power Gp of a graph G is the graph obtained
from G by linking every two vertices at distance at most p from each other in G, that is,
V (Gp) = V (G) and uv ∈ E(Gp) if and only if 1 ≤ distG(u, v) ≤ p.

Consider now the cycle Cn of order n ≥ 3. Such a cycle has 2n incidences and the
associated incidence graph ICn

is the square C2
2n of the cycle C2n.

In [12], Prowse and Woodall proved that ch(Cp
n) = χ(Cp

n) for every p ≥ 1 and n ≥ 3, and
thus, in particular, for the square of such a cycle. On the other hand, it is not difficult to
determine the incidence chromatic number of any cycle Cn [2, 14]. Therefore, we get:

Theorem 5 For every n ≥ 3, 3 ≤ chi(Cn) = χi(Cn) ≤ 4, with chi(Cn) = χi(Cn) = 3 if
and only if n ≡ 0 (mod 3).

A graph G is d-degenerated if every subgraph of G contains a vertex of degree at most
d. By a simple inductive argument, it is easy to prove that every d-degenerate graph has
chromatic number, as well as choice number, at most d + 1 [1, Proposition 2.2]. Let v
be any vertex of G with degree at most d. Every incidence of the form (v, vu) has then
at most ∆(G) + 2d − 2 adjacent incidences in G. Therefore, the incidence graph IG is
(∆(G) + 2d− 2)-degenerate whenever G is d-degenerate, and we have:

Theorem 6 For every d-degenerated graph G, χi(G) ≤ chi(G) ≤ ∆(G) + 2d− 1.

Since every tree is 1-degenerated, every K4-minor free graph (and thus every outerplanar
graph) is 2-degenerated, and every planar graph is 5-degenerated, Theorem 6 gives the
following:

Corollary 7 For every graph G,

1. if G is a tree, then chi(G) = ∆(G) + 1,

2. if G is a K4−minor free graph (resp. an outerplanar graph), then chi(G) ≤ ∆(G)+3,

3. if G is a planar graph, then chi(G) ≤ ∆(G) + 9.
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Figure 2: The partially L0-list incidence coloured graph H0 of Lemma 8.

3 Square grids

The square grid Gm,n is the graph defined as the Cartesian product of two paths of
respective orderm and n, that is, Gm,n = Pm Pn. Since every square grid is 2-degenerated,
Theorem 6 gives chi(Gm,n) ≤ ∆(Gm,n) + 3 ≤ 7 for every m and n, m ≥ n ≥ 2. In this
section, we prove that this bound can be decreased to 5 if n = 2 and to 6 if n ≥ 3.

We first prove the following useful lemma.

Lemma 8 Let H0 be the graph depicted in Figure 2, L0 be any list assignment of H0

such that |L0(i, ij)| ≥ 6 for every incidence (i, ij) of H0, and σ0 be the partial L0-list
incidence colouring of H0 using colours from the set {α1, α

′

1, α2, α
′

2 β1, β2, β3, β4} depicted
in Figure 2.

Then, there exist a ∈ L0(u, ux) \ {α1, α
′

1, α2, α
′

2}, b ∈ L0(u, uu
′′) \ {α1, α

′

1, α2, α
′

2}, c ∈
L0(x, xu)\{α1, α2, β4}, and d ∈ L0(x, xw)\{β1, β2, β3, β4}, such that |{a, b, c}| = |{a, c, d}| =
3, so that σ0 can be extended to colour the four incidences (u, ux), (u, uu′′), (x, xu) and
(x, xw).

Proof. Note first that |L0(u, ux)\{α1, α
′

1, α2, α
′

2}| ≥ 2 and |L0(u, uu
′′)\{α1, α

′

1, α2, α
′

2}| ≥
2, so that we can always choose a and b as required.

If |L0(x, xu)∩ {α1, α2, β4}| ≤ 2, then we can choose d ∈ L0(x, xw) \ {β1, β2, β3, β4, a} and
c ∈ L0(x, xu) \ {α1, α2, β4, a, b, d}.
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Similarly, if |L0(x, xw)∩{β1, β2, β3, β4}| ≤ 3, then we can choose c ∈ L0(x, xu)\{α1, α2, β4, a, b}
and d ∈ L0(x, xw) \ {β1, β2, β3, β4, a, c}.

Suppose now that {α1, α2, β4} ⊆ L0(x, xu) and {β1, β2, β3, β4} ⊆ L0(x, xw). We consider
three cases.

1. If β4 ∈ L0(u, ux) \ {α1, α
′

1, α2, α
′

2}, then we set a = β4. We can then choose b ∈
L0(u, uu

′′) \ {α1, α
′

1, α2, α
′

2, β4}, c ∈ L0(x, xu) \ {α1, α2, β4, b}, and d ∈ L0(x, xw) \
{β1, β2, β3, β4, c}.

2. If β4 /∈ L0(u, ux) \ {α1, α
′

1, α2, α
′

2} and β4 ∈ L0(u, uu
′′) \ {α1, α

′

1, α2, α
′

2}, then we
set b = β4. Again, we can then choose a ∈ L0(u, ux) \ {α1, α

′

1, α2, α
′

2, β4}, d ∈
L0(x, xw) \ {β1, β2, β3, β4, a}, and c ∈ L0(x, xu) \ {α1, α2, β4, a, d}.

3. Suppose that none of the previous cases occurs. Let {ε1, ε2} ⊆ L0(u, ux)\{α1, α
′

1, α2, α
′

2}
and {ε3, ε4} ⊆ L0(u, uu

′′) \ {α1, α
′

1, α2, α
′

2}. We consider two subcases.

(a) If {ε1, ε2} ∩ {ε3, ε4} = ∅, we first choose d ∈ L0(x, xw) \ {β1, β2, β3, β4} and
c ∈ L0(x, xu) \ {α1, α2, β4} in such a way that c 6= d and {ε1, ε2} 6= {c, d} (this
can be done since we have at least two choices for d, and then still two choices
for c). We then choose a ∈ {ε1, ε2} \ {c, d} and b ∈ {ε3, ε4} \ {c}.

(b) Otherwise, let µ ∈ {ε1, ε2} ∩ {ε3, ε4}. We consider two subcases.

i. If µ /∈ L0(x, xu) or µ /∈ L0(x, xw), then we set a = µ and b ∈ {ε3, ε4}
with b 6= µ. Now, if µ /∈ L0(x, xu), we then choose d ∈ L0(x, xw) \
{β1, β2, β3, β4, µ} and c ∈ L0(x, xu)\{α1, α2, β4, b, d}. Otherwise (in which
case we have µ /∈ L0(x, xw)), we then choose c ∈ L0(x, xu)\{α1, α2, β4, a, b},
and d ∈ L0(x, xw) \ {β1, β2, β3, β4, c}.

ii. Suppose finally that µ ∈ L0(x, xu) ∩ L0(x, xw). If µ /∈ {β1, β2, β3, β4},
then we set b = d = µ and a ∈ {ε1, ε2} with a 6= µ. We then choose
c ∈ L0(x, xu) \ {α1, α2, β4, a, µ}. Otherwise (that is, µ ∈ {β1, β2, β3, β4}),
we set a = µ and b ∈ {ε3, ε4} with b 6= µ, so that we can choose c ∈
L0(x, xu) \ {α1, α2, β4, µ, b} and d ∈ L0(x, xw) \ {β1, β2, β3, β4, c}.

In all cases, the colours a, b, c and d clearly satisfy the requirements of the lemma. �

We are now able to prove the main result of this section.

Theorem 9 For every integers m and n, m ≥ n ≥ 2, we have

{

chi(Gm,n) ≤ 5, if n = 2,
chi(Gm,n) ≤ 6, otherwise.
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Figure 3: Colouring the incidences of G5,4 in five steps (Theorem 9).

Proof. Let V (Gm,n) = {vi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, so that E(Gm,n) = {(vi,j, vi′,j′) | |i−
i′|+ |j − j′| = 1}.

Suppose first that n = 2 and let L be any list assignment of Gm,2 such that |L(v, vu)| = 5
for every incidence (v, vu) of Gm,2. We construct an L-list incidence colouring of Gm,2 as
follows.

Let us denote by Si, 1 ≤ i ≤ m− 1, the ith square of Gm,2, that is, the subgraph of Gm,2

induced by the set of vertices {vi,1, vi,2, vi+1,1, vi+1,2}. We first colour the incidences of S1.
This can be done since every such incidence has four adjacent incidences.

Then, if m ≥ 3, we colour the incidences of the remaining squares sequentially, from S2 to
Sm−1. For each such square Si, we colour the incidences (vi,1, vi,1vi+1,1), (vi+1,1, vi+1,1vi,1),
(vi,2, vi,2vi+1,2), (vi+1,2, vi+1,2vi,2), (vi+1,1, vi+1,1vi+1,2) and (vi+1,2, vi+1,2vi+1,1), in that order.
This can be done since, doing so, every such incidence has at most four already coloured
adjacent incidences.

Suppose now that m ≥ n ≥ 3 and let L be any list assignment of Gm,n such that
|L(v, vu)| = 6 for every incidence (v, vu) of Gm,n. We will construct an L-list incidence
colouring of Gm,n in five steps. Figure 3 depicts the grid G5,4 and gives, for each of its
incidences, the number (from 1 to 5) of the step during which it will be coloured.

1. We first colour all internal incidences of vertices v1,j , sequentially from v1,1 to v1,n,
and all internal incidences of vertices vi,1, sequentially, from v2,1 to vm,1. This can
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be done since, doing so, every such incidence has at most three already coloured
adjacent incidences.

2. We then colour all internal incidences of vertices v2,j, sequentially from v2,2 to
v2,n. For each such vertex v2,j, we colour its internal incidences (v2,j, v2,jv2,j−1),
(v2,j, v2,jv1,j), (v2,j , v2,jv3,j) and (v2,j , v2,jv2,j+1), in that order (note that v2,n has
only the first three internal incidences). This can be done since, doing so, every
such incidence has at most five already coloured adjacent incidences.

3. Now, if m ≥ 4, then, for i = 2 to m − 1, we colour the uncoloured internal inci-
dences of vi,j, sequentially from vi,2 to vi,n−1 (when n ≥ 4). Each “row” of internal
incidences, corresponding to vertices vi,2 to vi,n−1, is coloured as follows.

(a) We colour the internal incidences (vi,2, vi,2vi−1,2) and (vi,2, vi,2vi,1) of vi,2, in that
order, which can be done since these two incidences have five already coloured
adjacent incidences.

(b) If 2 ≤ j ≤ n− 2, then the set of vertices

{vi,j−1, vi,j, vi,j+1, vi,j+2, vi+1,j, vi+1,j+1, vi−1,j, vi−1,j+1, vi−1,j+2, vi−2,j+1}

induces a subgraph of Gm,n isomorphic to the graph H0 of Lemma 8. There-
fore, according to Lemma 8, the four incidences (vi,j, vi,jvi,j+1), (vi,j, vi,jvi+1,j),
(vi,j+1, vi,j+1vi,j) and (vi,j+1, vi,j+1vi−1,j+1) can be coloured with the colours a,
b, c and d given by the lemma, respectively.

(c) We finally colour the two incidences (vi,n−1, vi,n−1vi,n) and (vi,n−1, vi,n−1vi+1,n−1),
in that order, which can be done since, doing so, these incidences have four
and five already coloured adjacent incidences, respectively.

4. If m ≥ 4, we colour all internal incidences of vertices vi,n, 3 ≤ i ≤ m−1, sequentially
from v3,n to vm−1,n. For each such vertex vi,n, we colour its internal incidences
(vi,n, vi,nvi,n−1), (vi,n, vi,nvi−1,n) and (vi,n, vi,nvi+1,n), in that order. This can be done
since, doing so, every such incidence has at most five already coloured adjacent
incidences.

5. Finally, we colour all (uncoloured) internal incidences of vertices vm,j , sequentially
from vm,2 to vm,n. For each such vertex vm,j, we colour its internal incidences
(vm,j , vm,jvm−1,j), (vm,j , vm,jvm,j−1) and (vm,j , vm,jvm,j+1), in that order (note that
vm,n has only the first two internal incidences). This can be done since every such
incidence has at most five already coloured adjacent incidences.

This completes the proof. �

4 Halin graphs

Recall first that the star Sn, n ≥ 1, is the complete bipartite graph K1,n. Moreover, the
wheel Wn, n ≥ 3, is the graph obtained from the cycle Cn by adding a new vertex adjacent
to every vertex of Cn.
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Figure 4: Configurations for the proof of Proposition 10.

A Halin graph is a planar graph obtained from a tree of order at least 4 with no vertex of
degree 2, by adding a cycle connecting all its leaves [7]. We call this cycle the outer cycle
of G. In particular, every wheel is a Halin graph. Wang, Chen and Pang proved that
χi(G) = ∆(G) + 1 for every Halin graph G with ∆(G) ≥ 5 [18], Shiu and Sun [13] that
χi(G) = 5 for every cubic Halin graph, and Meng, Guo and Su that χi(G) ≤ ∆(G) + 2
for every Halin graph G with ∆(G) = 4 [11].

In this section, we determine the incidence choice number of every Halin graph G with
∆(G) ≥ 6 and provide upper bounds for Halin graphs with smaller maximum degree. For
every Halin graph G, we denote by CG the outer cycle of G and by TG the subgraph of G
obtained by deleting all the edges of the outer cycle of G. The subgraph TG is thus a tree
and, in particular, TG is a star if G is a wheel.

We will prove four lemmas, from which the main result of this section will follow. We
first prove a preliminary result, which says that for every tree T and list-assignment L of
T with |L(v, vu)| ≥ ∆(T ) + k for every incidence (v, vu) of T and some integer k ≥ 1,
one can pre-colour k incidences of T and extend this pre-colouring to an L-list incidence
colouring of T .

Proposition 10 Let T be a tree, k ≥ 1 be an integer, and L be a list-assignment of
T such that |L(v, vu)| ≥ ∆(T ) + k for every incidence (v, vu) in T . For every set
{(x1, x1y1), . . . , (xk, xkyk)} of k incidences in T and every set {α1, . . . , αk} of k colours
such that αi ∈ L(xi, xiyi) for every i, 1 ≤ i ≤ k, and αi 6= αj if (xi, xiyi) and (xj , xjyj)
are adjacent, 1 ≤ i < j ≤ k, there exists an L-list incidence colouring σ of T such that
σ(xi, xiyi) = αi for every i, 1 ≤ i ≤ k.

Proof. The proof is by induction on k. Let L be a list-assignment of T with |L(v, vu)| ≥
∆(T ) + 1 for every incidence (v, vu) in T , (x1, x1y1) be any incidence in T , and α1 ∈
L(x1, x1y1). Let Tx1

and Ty1 denote the two components (trees) obtained from T by
deleting the edge x1y1, with x1 ∈ V (Tx1

) and y1 ∈ V (Ty1). We then denote by T ∗

x1

and T ∗

y1
the subtrees of T obtained by adding the edge x1y1 to Tx1

and Ty1 , respectively
(see Figure 4), and by Lx1

and Ly1 the restrictions of L to T ∗

x1
and T ∗

y1
, respectively.

The desired L-list incidence colouring σ of T will be obtained by combining an Lx1
-list

incidence colouring of T ∗

x1
with an Ly1-list incidence colouring of T ∗

y1
.
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We construct σx1
as follows. We first set σx1

(x1, x1y1) = α1 and σx1
(y1, y1x1) = β1, for

some β1 ∈ Lx1
(y1, y1x1) = L(y1, y1x1). Considering y1 as the root of T

∗

x1
, we can extend σx1

to an Lx1
-list incidence colouring of T ∗

x1
by colouring the incidences in a top-bottom way,

since, doing so, every uncoloured incidence will have at most ∆(T ∗

x1
) ≤ ∆(T ) forbidden

colours. The colouring σy1 is constructed similarly. We first set σy1(x1, x1y1) = α1 and
σy1(y1, y1x1) = β1, and then colour the remaining incidences of T ∗

y1
in a top-bottom way,

considering x1 as the root of T ∗

y1
. Clearly, combining the colourings σx1

and σy1 produces
an L-list incidence colouring σ of T with σ(x1, x1y1) = α1.

Suppose now that k > 1. Let {(x1, x1y1), . . . , (xk, xkyk)} be a set of k incidences in T
and {α1, . . . , αk} be a set of k colours satisfying the conditions of the proposition. Let L′

denote the list assignment of T defined by L′(v, vu) = L(v, vu) \ {αk} for every incidence
(v, vu) in T . Thanks to the induction hypothesis, there exists an L′-list incidence colouring
σ′ of T such that σ′(xi, xiyi) = αi for every i, 1 ≤ i ≤ k−1. The required L-list incidence
colouring of T is then obtained by setting σ(xk, xkyk) = αk and σ(v, vu) = σ′(v, vu) for
every incidence (v, vu) 6= (xk, xkyk) in T . �

The next lemma gives a general upper bound on the incidence choice number of Halin
graphs. Note that by Proposition 3, the corresponding bound is tight for every Halin
graph with maximum degree at least 6.

Lemma 11 If G is a Halin graph, then chi(G) ≤ max(∆(G) + 1, 7).

Proof. Let G be a Halin graph and L be any list assignment of G such that

|L(v, vu)| = max(∆(G) + 1, 7) ≥ 7

for every incidence (v, vu) of G. Let CG = v0v1 . . . vk−1v0. Each vertex vi, 0 ≤ i ≤ k − 1,
has thus three neighbours in G, namely vi−1, vi+1 (subscripts are taken modulo k), and
some vertex ti ∈ V (TG)\V (CG) (see Figure 5). Note here that the ti’s are not necessarily
distinct. More precisely, we always have ti = ti−1 or ti = ti+1 (or both) for every i,
0 ≤ i ≤ k − 1 (subscripts are taken modulo k).

By Corollary 7, we know that TG is incidence (∆(TG) + 1)-choosable, and thus incidence
(∆(G) + 1)-choosable. Let σ be such an L-list incidence colouring of TG. Since every
incidence of CG has exactly three already coloured adjacent incidences in TG, and thus at
least four available colours in its list, σ can be extended to an L-list incidence colouring
of G, thanks to Theorem 5. �

Using Proposition 10, we can get another upper bound on the incidence choice number
of Halin graphs that are not wheels. This new bound thus improves the bound given in
Lemma 11 for every Halin graph with maximum degree 3 or 4, except for the two wheels
W3 = K4 and W4.
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vk−1 v0 v1

tk−1 t0 t1

Figure 5: Part of the outer cycle CG of a Halin graph G (the ti’s are not necessarily
distinct).

vk−1 v0 v1 v2

tk−1 = t0 t1 = t2

a

c

b

d

e

Figure 6: Configuration for the proof of Lemma 12.

Lemma 12 If G is a Halin graph such that TG is not a star, then chi(G) ≤ max(∆(G)+
2, 6).

Proof. If ∆(G) ≥ 5, the result directly follows from Lemma 11. We can thus assume
∆(G) ∈ {3, 4} (but we do not need this assumption in the proof).

Let G be a Halin graph and L be any list assignment of G such that

|L(v, vu)| = max(∆(G) + 2, 6) ≥ 6

for every incidence (v, vu) of G, and let p = max(∆(G) + 2, 6). As in the proof of
Lemma 11, we let CG = v0v1 . . . vk−1v0 and ti denotes the unique neighbour of vi in
V (TG) \ V (CG), 0 ≤ i ≤ k− 1. Note that starting from an L-list incidence colouring σ of
TG and then colouring the incidences of CG in cyclic order, starting from any incidence,
all incidences of CG but the last two ones can be coloured, as each of these incidences has
at most five forbidden colours. We will prove that one can always fix the colour of some
incidences, so that one can produce an L-list incidence colouring of G.

Since TG is not a star, there exists an index i, 0 ≤ i ≤ k−1, such that the vertices ti−1 and
ti are distinct. We can thus assume, without loss of generality, that t0 6= t1. Moreover,
since TG has no vertex of degree two, we have tk−1 = t0 and t2 = t1 (see Figure 6).

The following claim will be essential in the construction of an L-list incidence colouring
of G.
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Claim 1 There exist a ∈ L(vk−1, vk−1t0), b ∈ L(v0, v0t0), c ∈ L(v0, v0v1), d ∈ L(t1, t1v1)
and e ∈ L(v2, v2v1), with b 6= c, such that

|L(vk−1, vk−1v0)∩{a, b, c}| ≤ 2, |L(v0, v0vk−1)∩{a, b, c}| ≤ 2, and |L(v1, v1v0)∩{c, d, e}| ≤ 1.

Proof. We first deal with the incidence (v1, v1v0) and set the values of c, d and e. Let
C = L(v0, v0v1), D = L(t1, t1v1) and E = L(v2, v2v1). If C ∩ D ∩ E 6= ∅, then we set
c = d = e = γ for some γ ∈ C ∩D ∩ E, so that |L(v1, v1v0) ∩ {c, d, e}| ≤ 1.

Otherwise, we have two cases to consider.

1. If C, D and E are pairwise disjoint, then at least two of them are distinct from
L(v1, v1v0), so that we can choose c, d and e in such a way that |L(v1, v1v0) ∩
{c, d, e}| ≤ 1.

2. Suppose now that C ∩ D 6= ∅ (the cases C ∩ E 6= ∅ and D ∩ E 6= ∅ are similar).
We first set c = d = γ for some γ ∈ C ∩ D. If γ ∈ L(v1, v1v0), then there
exists ε ∈ E \ L(v1, v1v0) (since (C ∩ D) ∩ E = ∅) and we set e = ε, so that
|L(v1, v1v0) ∩ {c, d, e}| ≤ 1. If γ /∈ L(v1, v1v0), then we set e = ε for any ε ∈ E and
we also get |L(v1, v1v0) ∩ {c, d, e}| ≤ 1.

We now consider the incidence (v0, v0vk−1). Let A = L(vk−1, vk−1t0) and B = L(v0, v0t0).
If c /∈ L(v0, v0vk−1), then |L(v0, v0vk−1) ∩ {a, b, c}| ≤ 2 for any values of a and b.

Suppose now that c ∈ L(v0, v0vk−1). If |A ∩ B| ≥ 2, then we set a = b = λ for some
λ ∈ (A ∩ B) \ {c}, so that |L(v0, v0vk−1) ∩ {a, b, c}| ≤ 2. Otherwise, we necessarily have
A 6= L(v0, v0vk−1) or B 6= L(v0, v0vk−1). In the former case, we set a = α for some
α ∈ A\L(v0, v0vk−1), so that |L(v0, v0vk−1)∩{a, b, c}| ≤ 2 for any value of b. In the latter
case, we set b = β for some β ∈ B \L(v0, v0vk−1), so that |L(v0, v0vk−1)∩{a, b, c}| ≤ 2 for
any value of a.

We finally consider the incidence (vk−1, vk−1v0). If c /∈ L(vk−1, vk−1v0), then |L(vk−1, vk−1v0)∩
{a, b, c}| ≤ 2 for any values of a and b and we are done.

Suppose now that c ∈ L(vk−1, vk−1v0). If none of the values of a and b have been set in
the previous step, then we proceed as for the incidence (v0, v0vk−1) and the result follows.
Otherwise, we have two cases to consider.

1. If the values of both a and b have been set in the previous step, then we have
a = b = λ, so that |L(vk−1, vk−1v0) ∩ {a, b, c}| ≤ 2.

2. Suppose now that the value of a has been set in the previous step, that is, a = α
for some α ∈ A \ L(v0, v0vk−1) (the proof is similar if the value of b has been set).
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If α ∈ B, then we can set b = α and we are done. If α /∈ B and α /∈ L(vk−1, vk−1v0),
then we get |L(vk−1, vk−1v0) ∩ {a, b, c}| ≤ 2 for any value of b. Otherwise, we have
α /∈ B and α ∈ L(vk−1, vk−1v0), which implies B 6= L(vk−1, vk−1v0). Therefore, we
can set b = β for some β ∈ B\L(vk−1, vk−1v0), so that |L(vk−1, vk−1v0)∩{a, b, c}| ≤ 2.

This concludes the proof of Claim 1. �

We now construct an L-list incidence colouring σ of G in three steps.

1. We first set σ(vk−1, vk−1t0) = a, σ(v0, v0t0) = b, σ(v0, v0v1) = c, σ(t1, v1t1) = d, and
σ(v2, v1v2) = e, where a, b, c, d and e are the values determined in the proof of
Claim 1.

2. Let P = t0u1 . . . uℓt1, or P = t0t1 if t0t1 ∈ E(G), denote the unique path from t0 to
t1 in TG (see Figure 7). We colour all the incidences of TG as follows.

• We first colour all internal incidences of t0, starting with the incidence (t0, t0v0),
and then the incidence (t0, t0t1) if t0t1 ∈ E(G). This can be done since every
such incidence has at most ∆(G) + 1 already coloured adjacent incidences.

• If t0t1 /∈ E(G)), then we colour the internal incidences of the vertices of P
sequentially, from u1 to uℓ. Again, every such incidence has at most ∆(G) + 1
already coloured adjacent incidences.

• We colour the incidence (t1, t1uℓ) (or (t1, t1t0) if t0t1 ∈ E(G)), which has at most
∆(G) + 1 already coloured adjacent incidences, then the incidence (v1, v1t1),
which has four already coloured adjacent incidences, and then the incidence
(t1, t1v2), which has five already coloured adjacent incidences (recall that p ≥
6).

• We colour the remaining uncoloured internal incidences of t1, if any. This can
be done since every such incidence has at most ∆(G) + 1 already coloured
adjacent incidences.

• Now, we colour the uncoloured external incidences of the vertices of P , sequen-
tially, from t0 to t1. Again, this can be done since every such incidence has at
most ∆(G) + 1 already coloured adjacent incidences.

• For every edge xy ∈ E(TG), we denote by Txy the unique maximal subtree of TG

containing the edge xy and such that degTxy
(x) = 1. Clearly, each remaining

uncoloured incidence of TG belongs to some subtree Txy, with x ∈ V (P ) and
y /∈ V (P ) ∪ {vk−1, v0, v1, v2}. Moreover, the only already coloured incidences
of any such subtree Txy are (x, xy) and (y, yx). By Proposition 10, we can
therefore extend σ to all incidences of TG.

3. We finally colour all the uncoloured incidences of CG (the only incidences of CG

already coloured are (v0, v0v1) and (v2, v2v1)) as follows.

• We first colour the incidence (v1, v1v2), which has five already coloured adjacent
incidences.
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vk−1 v0 v1 v2

t0 t1
u1 uℓ
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b

d

e

a

Figure 7: Colouring the subtree of TG in the proof of Lemma 12.

• We then cyclically colour the incidences of CG from (v2, v2v3) to (vk−1, vk−1vk−2).
This can be done since, doing so, every such incidence has four or five already
coloured adjacent incidences.

• By Claim 1, the incidence (vk−1, vk−1v0) has at most five forbidden colours and
can thus be coloured. Similarly, thanks to Claim 1, we can also colour the
incidences (v0, v0vk−1) and (v1, v1v0) (in that order).

This completes the proof. �

The next lemma shows that the incidence choice number of K4 is at most 6.

Lemma 13 chi(K4) ≤ 6.

Proof. Let V (K4) = {v0, v1, v2, v3) and L be any list assignment of K4 such that
|L(vi, vivj)| = 6 for every incidence (vi, vivj) of K4.

The following claim will be useful for constructing an L-list incidence colouring of K4.

Claim 2 There exist a ∈ L(v1, v1v0), b ∈ L(v2, v2v0), and c ∈ L(v3, v3v0) such that

|L(v0, v0v1) ∩ {a, b, c}| ≤ 1.

Proof. Let A = L(v1, v1v0), B = L(v2, v2v0) and C = L(v3, v3v0). If A∩B ∩C 6= ∅, then
we set a = b = c = γ for some γ ∈ A ∩ B ∩ C, so that |L(v0, v0v1) ∩ {a, b, c}| ≤ 1.

Otherwise, we consider two cases.

1. If A, B and C are pairwise disjoint, then at least two of them are distinct from
L(v0, v0v1), so that we can choose a, b and c in such a way that |L(v0, v0v1) ∩
{a, b, c}| ≤ 1.
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2. Suppose now that A ∩ B 6= ∅ (the cases A ∩ C 6= ∅ and B ∩ C 6= ∅ are similar).
We first set a = b = γ for some γ ∈ A ∩ B. If γ ∈ L(v0, v0v1), then there exists
ε ∈ C \ L(v0, v0v1) (since (A ∩ B) ∩ C = ∅) and we set c = ε, so that |L(v0, v0v1) ∩
{a, b, c}| ≤ 1. If γ /∈ L(v0, v0v1), then we set e = ε for any ε ∈ C and we also get
|L(v0, v0v1) ∩ {a, b, c}| ≤ 1.

This concludes the proof of Claim 2. �

We now construct an L-list incidence colouring σ of K4, by setting first σ(v1, v1v0) = a,
σ(v2, v2v0) = b and σ(v3, v3v0) = c, where a, b and c are the values determined in the
proof of Claim 2.

We then consider two cases.

1. Suppose first that |{a, b, c}| ≤ 2 and assume a = b (the cases a = c and b = c
are similar). We then colour the remaining uncoloured incidences as follows (see
Figure 8(a)). We first colour the incidences (v3, v3v1), (v3, v3v2), (v2, v2v3), (v1, v1v3)
and (v2, v2v1), in that order. This can be done since, doing so, every such incidence
has at most five already coloured adjacent incidences. We then colour the incidences
(v1, v1v2), (v0, v0v3) and (v0, v0v2), in that order. This can be done since, doing so,
every such incidence has at most five forbidden colours (recall that a = b). We
finally colour the incidence (v0, v0v1), which has at least one available colour in its
own list since, by Claim 2, |L(v0, v0v1) ∩ {a, b, c}| ≤ 1).

2. Suppose now that |{a, b, c}| = 3. By symmetry and thanks to Claim 2, we may
assume L(v0, v0v1)∩{a, b} = ∅, without loss of generality. We consider two subcases.

(a) |L(v0, v0v2) ∩ {a, b}| ≤ 1 (or, similarly, |L(v0, v0v3) ∩ {a, b}| ≤ 1).
We first uncolour the incidence (v3, v3v0) (note that for any choice of σ(v3, v3v0),
the statement of Claim 2 will be satisfied). We then colour the remaining
uncoloured incidences as follows (see Figure 8(b)). We first colour the inci-
dences (v1, v1v3), (v1, v1v2), (v2, v2v1), (v2, v2v3), (v3, v3v2), (v3, v3v1), (v3, v3v0)
and (v0, v0v3), in that order. This can be done since, doing so, every such
incidence has at most five already coloured adjacent incidences. We then
colour the incidence (v0, v0v2), which has at most five forbidden colours since
|L(v0, v0v2) ∩ {a, b}| ≤ 1, and the incidence (v0, v0v1), which has also at most
five forbidden colours since |L(v0, v0v1) ∩ {a, b, σ(v3, v3v0)}| ≤ 1.

(b) {a, b} ⊆ (L(v0, v0v2) ∩ L(v0, v0v3)).
We first uncolour the incidences (v1, v1v0) and (v2, v2v0), and set σ(v0, v0v2) = a
and σ(v0, v0v3) = b (this is possible since c /∈ {a, b}).

We claim that there exists a colour d ∈ L(v1, v1v2) such that |L(v1, v1v0) ∩
{b, d}| ≤ 1. This is obviously the case if b /∈ L(v1, v1v0). Assume thus that
b ∈ L(v1, v1v0). If b ∈ L(v1, v1v2), then we can set d = b. Otherwise, it suffices
to choose any d in L(v1, v1v2) \ L(v1, v1v0). We then set σ(v1, v1v2) = d.
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Figure 8: Ordering the incidences of K4 for the proof of Lemma 13.

We then colour the remaining uncoloured incidences as follows (see Figure 8(c)).
We first colour the incidences (v3, v3v1), (v3, v3v2), (v2, v2v3), (v2, v2v0), (v2, v2v1)
and (v1, v1v3), in that order. This can be done since, doing so, every such
incidence has at most five already coloured adjacent incidences. We then
colour the incidences (v1, v1v0), which has at most five forbidden colours since
|L(v1, v1v0)∩ {b, d}| ≤ 1), and (v0, v0v1), which has also at most five forbidden
colours since L(v0, v0v1) ∩ {a, b} = ∅.

This completes the proof. �

By Proposition 3 and Lemmas 11, 12 and 13, we get:

Theorem 14 If G is a Halin graph, then







chi(G) ≤ 6, if ∆(G) ∈ {3, 4} and G 6= W4,
chi(G) ≤ 7, if ∆(G) = 5 or G = W4,
chi(G) = ∆(G) + 1, otherwise.
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5 Cactuses

A cactus is a (planar) graph such that every vertex belongs to at most one cycle. The
corona G⊙K1 of a graphG is the graph obtained fromG by adding one pendent neighbour
to each vertex of G. A generalized corona of a graph G is a graph G ⊙ pK1, for some
integer p ≥ 1, obtained from G by adding p pendent neighbours to each vertex of G. In
particular, every generalized corona of a cycle is thus a cactus.

We give in this section an upper bound on the incidence choice number of cactuses. In
order to do that, we will first consider the case of generalized coronae of cycles.

For every integer n ≥ 3, we let V (Cn) = {v0, . . . , vn−1}. For every generalized corona
Cn⊙pK1 of the cycle Cn and every vertex vi of Cn, 0 ≤ i ≤ n−1, we denote by v1i , . . . , v

p
i

the p pendent neighbours of vi.

Let G = Cn ⊙ pK1, with n ≥ 3 and p ≥ 1, be a generalized corona of Cn, and L be
any list assignment of G such that |L(v, vu)| = ∆(G) + 2 for every incidence (v, vu) of
G. By colouring first the incidences of Cn, then the uncoloured internal incidences of
v0, . . . , vn−1, and finally the external incidences of v0, . . . , vn−1, we can produce an L-list
incidence colouring of G since, doing so, every incidence has at most ∆(G) + 1 already
coloured adjacent incidences. Therefore, chi(Cn ⊙ pK1) ≤ ∆(Cn ⊙ pK1) + 2 for every
generalized corona Cn ⊙ pK1.

The next lemma shows that we can decrease by 1 this bound whenever p ≥ 4. Note that
by Proposition 3, in that case, the corresponding bound is tight. Since it will be useful
for studying the incidence choice number of cactuses, the next lemma also considers the
case when the two incidences of one pendent edge are pre-coloured, and proves that an
additional colour is needed in that case only when n = 3 and p ≥ 3.

Lemma 15 For every integers n ≥ 3 and p ≥ 1,

chi(Cn ⊙ pK1) ≤

{

∆(Cn ⊙ pK1) + 2 = p+ 4, if p ≤ 2,
max(∆(Cn ⊙ pK1) + 1, 7) = max(p+ 3, 7), otherwise.

Moreover, for every list assignment L of Cn⊙pK1 with |L(v, vu)| = k for every incidence
(v, vu) of Cn⊙pK1, a ∈ L(v0, v0v

1
0) and b ∈ L(v10 , v

1
0v0), a 6= b, there exists an L-incidence

colouring σ of Cn ⊙ pK1 with σ(v0, v0v
1
0) = a and σ(v10, v

1
0v0) = b in each of the following

cases:

1. p ≤ 2 and k ≥ p+ 4,

2. n > 3, p ≥ 3 and k ≥ max(p+ 3, 7),

3. n = 3, p ≥ 3 and k ≥ max(p+ 3, 8).
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Proof. Since the proof when two incidences are pre-coloured is similar to the proof of
the general bound, we give these two proofs simultaneously, referring to the former case
as the pre-coloured case. In the following, subscripts are always taken modulo n.

We first consider the case p ≤ 2. Let L be any list assignment of Cn ⊙ pK1 such that
|L(v, vu)| = p+ 4 if p ≤ 2 for every incidence (v, vu) of Cn ⊙ pK1, and let a ∈ L(v0, v0v

1
0)

and b ∈ L(v10, v
1
0v0), a 6= b. We will construct an L-list incidence colouring σ of Cn ⊙ pK1

in three steps. We first set σ(v0, v0v
1
0) = a and σ(v10, v

1
0v0) = b, even if we are not in the

pre-coloured case.

1. Incidences of Cn.
If p = 1, there is only one edge incident to v0 not belonging to Cn, and both
its incidences are already coloured. If p = 2, we claim that there exists c ∈
L(vn−1, vn−1v0) such that |L(v0, v0v

2
0)∩{a, b, c}| ≤ 2 and we set σ(vn−1, vn−1v0) = c.

Indeed, if {a, b} 6⊆ L(v0, v0v
2
0), then |L(v0, v0v

2
0) ∩ {a, b, c}| ≤ 2 for any value of

c ∈ L(vn−1, vn−1v0). Suppose now that {a, b} ⊆ L(v0, v0v
2
0). If b ∈ L(vn−1, vn−1v0),

then we set c = b. Otherwise, we set c = γ for some γ ∈ L(vn−1, vn−1v0)\L(v0, v0v
2
0).

We then colour the remaining uncoloured incidences of Cn cyclically, from (v0, v0vn−1)
to (vn−1, vn−1vn−2), which can be done since, doing so, every such incidence has at
most 4 < p+ 4 already coloured adjacent incidences.

2. Uncoloured internal incidences of vi, 0 ≤ i ≤ n− 1.
If p = 2, we colour the incidence (v0, v0v

2
0), which can be done since it has at most 5

forbidden colours (recall that |L(v0, v0v
2
0)∩{σ(v0, v0v

1
0), σ(v

1
0, v

1
0v0), σ(vn−1, vn−1v0)}| ≤

2 thanks to the previous step).

Now, for each vertex vi, 1 ≤ i ≤ n − 1, we colour the incidence (vi, viv
1
i ), or the

incidences (vi, viv
1
i ) and (vi, viv

2
i ), in that order, if p = 2. This can be done since,

doing so, every such incidence (vi, viv
j
i ), 1 ≤ j ≤ p, has j + 3 < p + 4 already

coloured adjacent incidences.

3. External incidences of vi, 0 ≤ i ≤ n− 1.
We finally colour all uncoloured incidences of the form (vji , v

j
i vi), 0 ≤ i ≤ n − 1,

1 ≤ j ≤ p, which can be done since every such incidence has at most p + 2 already
coloured adjacent incidences.

The above-constructed mapping σ is clearly an L-list incidence colouring σ of Cn ⊙ pK1

with σ(v0, v0v
1
0) = a and σ(v10, v

1
0v0) = b, as required.

We now consider the case p ≥ 3. Let L be any list assignment of Cn ⊙ pK1 such that,
for every incidence (v, vu) of Cn ⊙ pK1, |L(v, vu)| = max(p + 3, 7) if we are not in the
pre-coloured case or n > 3, and |L(v, vu)| = max(p+ 3, 8) otherwise. Moreover, if we are
in the pre-coloured case, then let a ∈ L(v0, v0v

1
0) and b ∈ L(v10 , v

1
0v0), a 6= b.

We will construct an L-list incidence colouring σ of Cn ⊙ pK1 in two steps. If we are in
the pre-coloured case, we first set σ(v0, v0v

1
0) = a and σ(v10, v

1
0v0) = b.
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Figure 9: Configuration for the proof of Lemma 15, pre-coloured case.

1. Incidences of Cn.
We first construct a partial L-list incidence colouring σ0 of Cn ⊙ pK1, fixing the
colour of all incidences of Cn, and satisfying the following property:

(P) For every i, 0 ≤ i ≤ n−1 (or 1 ≤ i ≤ n−1 if we are in the pre-coloured case),

|L(vi, viv
p
i ) ∩ {σ0(vi−1, vi−1vi), σ0(vi+1, vi+1vi)}| ≤ 1.

Moreover, if we are in the pre-coloured case, then

|L(v0, v0v
p
0) ∩ {a, b, σ0(vn−1, vn−1v0), σ0(v1, v1v0)}| ≤ 2.

We proceed in two steps.

(a) If we are in the pre-coloured case, then we first claim that there exist c ∈
L(v1, v1v0) and d ∈ L(vn−1, vn−1v0), c 6= a, d 6= a, such that |L(v0, v0v

p
0) ∩

{a, b, c, d}| ≤ 2, and set σ0(v1, v1v0) = c and σ0(vn−1, vn−1v0) = d (see Figure 9).
To see that, we consider two cases.

i. |{a, b} ∩ L(v0, v0v
p
0)[≤ 1.

In that case, it suffices to choose c and d in such a way that |{c, d} ∩
L(v0, v0v

p
0)| ≤ 1. This can be done since either (L(vn−1, vn−1v0)∩L(v1, v1v0))\

{a} 6= ∅, in which case we choose c = d = γ for some γ ∈ (L(vn−1, vn−1v0)∩
L(v1, v1v0))\{a}, or (L(vn−1, vn−1v0)∩L(v1, v1v0))\{a} = ∅, which implies

|L(vn−1, vn−1v0) ∪ L(v1, v1v0)| ≥ max(2(p+ 2), 12),

and we can choose c and d in such a way that |{c, d} ∩ L(v0, v0v
p
0)[≤ 1.

ii. {a, b} ⊆ L(v0, v0v
p
0).

If b ∈ L(v1, v1v0), then we set c = b. Otherwise, we set c = γ for some
γ ∈ L(v1, v1v0) \ L(v0, v0v

p
0). Similarly, if b ∈ L(vn−1, vn−1v0) then we set

d = b. Otherwise, we set d = δ for some δ ∈ L(vn−1, vn−1v0) \ L(v0, v0v
p
0).

In all cases, we get |L(v0, v0v
p
0) ∩ {a, b, c, d}| ≤ 2.

In both cases (pre-coloured or not), we are going to colour some incidences of
Cn, in such a way that for every i, 0 ≤ i ≤ n− 1 (or 1 ≤ i ≤ n− 1 if we are in
the pre-coloured case), we have the following property:

(P’) Either σ0(vi−1, vi−1vi) = σ0(vi+1, vi+1vi), or one of σ0(vi−1, vi−1vi), σ0(vi+1, vi+1vi)
only is set and, in that case, the assigned colour does not belong to
L(vi, viv

p
i ).
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vn−1 v0 v1 v2

cd
a

b

Figure 10: Colouring the external incidences of v1 (vn−1 = v2 if n = 3), pre-coloured case.

For every such i, we denote by αi the colour assigned to one or both external
incidences of vi. If we are in the pre-coloured case, we first deal with the
external incidences of v1 and vn−1.

• External incidences of v1, pre-coloured case (see Figure 10).
Let L′(v0, v0v1) = L(v0, v0v1) \ {a, b, c, d}, and

L′(v2, v2v1) =

{

L(v2, v2v1) \ {c, d}, if n = 3,
L(v2, v2v1) \ {c}, otherwise.

If L′(v0, v0v1)∩L
′(v2, v2v1) 6= ∅, then we set σ0(v0, v0v1) = σ0(v2, v2v1) = α1

for some α1 ∈ L′(v0, v0v1)∩L′(v2, v2v1). Otherwise, we consider two cases.

– If n = 3, then |L(v, vu)| ≥ max(p + 3, 8) for every incidence (v, vu) of
Cn⊙pK1, which implies |L′(v0, v0v1)| ≥ max(p−1, 4) and |L′(v2, v2v1)| ≥
max(p+1, 6), so that |L′(v0, v0v1)∪L′(v2, v2v1)| ≥ max(2p, 10). There-
fore, either there exists some colour α1 ∈ L′(v0, v0v1) \ L(v1, v1v

p
1),

in which case we set σ0(v0, v0v1) = α1, or there exists some colour
α1 ∈ L′(v2, v2v1) \ L(v1, v1v

p
1), and we set σ0(v2, v2v1) = α1.

– If n ≥ 4, then |L(v, vu)| ≥ max(p+ 3, 7) for every incidence (v, vu) of
Cn⊙pK1, which implies |L′(v0, v0v1)| ≥ max(p−1, 3) and |L′(v2, v2v1)| ≥
max(p + 2, 6), so that |L′(v0, v0v1) ∪ L′(v2, v2v1)| ≥ max(2p + 1, 9).
Therefore, either there exists some colour α1 ∈ L′(v0, v0v1)\L(v1, v1v

p
1),

in which case we set σ0(v0, v0v1) = α1, or there exists some colour
α1 ∈ L′(v2, v2v1) \ L(v1, v1v

p
1), and we set σ0(v2, v2v1) = α1.

• External incidences of vn−1, pre-coloured case.
Let L′(v0, v0vn−1) = L(v0, v0vn−1) \ {a, b, c, d, α1}, and

L′(vn−2, vn−2vn−1) =







L(vn−2, vn−2vn−1) \ {c, d, α1}, if n = 3,
L(vn−2, vn−2vn−1) \ {d, α1}, if n = 4,
L(vn−2, vn−2vn−1) \ {d}, otherwise.

If d 6∈ L(vn−1, vn−1v
p
n−1), then we set σ0(v0, v0vn−1) = αn−1 for some αn−1 ∈

L′(v0, v0vn−1) and we are done.
Suppose now that d ∈ L(vn−1, vn−1v

p
n−1). If L

′(vn−2, vn−2vn−1)∩L
′(v0, v0vn−1) 6=

∅, then we set σ0(vn−2, vn−2vn−1) = αn−1 and σ0(v0, v0vn−1) = αn−1 for
some αn−1 ∈ L′(vn−2, vn−2vn−1) ∩ L′(v0, v0vn−1). Otherwise, we consider
two cases.

– If n = 3 (and thus, (vn−2, vn−2vn−1) = (v1, v1v2)), then |L(v, vu)| ≥
max(p + 3, 8) for every incidence (v, vu) of C3 ⊙ pK1, which implies
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vn−2 vn−1 v0 v1 v2

cd α1? α1?
a

b

Figure 11: Colouring the external incidences of vn−1 (vn−2 = v2 if n = 4), pre-coloured
case. At least one of the incidences (v0, v0v1) or (v2, v2v1) is coloured with α1.

|L′(v1, v1v2)| ≥ max(p, 5) and |L′(v0, v0v2)| ≥ max(p − 2, 3), so that
|L′(v1, v1v2) ∪ L′(v0, v0v2)| ≥ max(2p − 2, 8). Note that L′(v1, v1v2) ∪
L′(v0, v0v2) 6= L(v2, v2v

p
2) since d ∈ L(v2, v2v

p
2) and d 6∈ L′(v1, v1v2) ∪

L′(v0, v0v2). Therefore, either there exists some colour α2 ∈ L′(v1, v1v2)\
L(v2, v2v

p
2), in which case we set σ0(v1, v1v2) = α2, or there exists some

colour α2 ∈ L′(v0, v0v2) \ L(v2, v2v
p
2), and we set σ0(v0, v0v2) = α2.

– If n ≥ 4 (see Figure 11), then |L(v, vu)| ≥ max(p+3, 7) for every inci-
dence (v, vu) of Cn⊙pK1, which implies |L′(vn−2, vn−2vn−1)| ≥ max(p+
1, 5) and |L′(v0, v0vn−1)| ≥ max(p− 2, 2), so that |L′(vn−2, vn−2vn−1)∪
L′(v0, v0vn−1)| ≥ max(2p−1, 7). As in the previous case, L′(vn−2, vn−2vn−1))∪
L′(v0, v0vn−1) 6= L(vn−1, vn−1v

p
n−1) since d ∈ L(vn−1, vn−1v

p
n−1) and

d 6∈ L′(vn−2, vn−2vn−1) ∪ L′(v0, v0vn−1). Therefore, either there exists
some colour αn−1 ∈ L′(vn−2, vn−2vn−1) \ L(vn−1, vn−1v

p
n−1), in which

case we set σ0(vn−2, vn−2vn−1) = αn−1, or there exists some colour
αn−1 ∈ L′(v0, v0vn−1) \ L(vn−1, vn−1v

p
n−1), and we set σ0(v0, v0vn−1) =

αn−1.

For constructing the partial colouring σ0, we proceed sequentially, from i = 2
to i = n − 2 if we are in the pre-coloured case and n 6= 3 (note that σ0 is
already constructed if n = 3), or from i = 0 to i = n− 1 otherwise.

For each such i, let

L′(vi−1, vi−1vi) = L(vi−1, vi−1vi) \ {αi−2, αi−1, αi+1}, and

L′(vi+1, vi+1vi) = L(vi+1, vi+1vi) \ {αi−1, αi+1, αi+2},

if we are not in the pre-coloured case, or

L′(vi−1, vi−1vi) =

{

L(vi−1, vi−1vi) \ {c, α1, α3}, if i = 2,
L(vi−1, vi−1vi) \ {αi−2, αi−1, αi+1}, otherwise,

and

L′(vi+1, vi+1vi) =

{

L(vi+1, vi+1vi) \ {αn−3, αn−1, d}, if i = n− 2,
L(vi+1, vi+1vi) \ {αi−1, αi+1, αi+2}, otherwise,

if we are in the pre-coloured case.

Note here that when proceeding with i, the colour αi−2 (resp. αi−1, αi+1, αi+2)
is defined only if i ≥ 2 (resp. i ≥ 1, i ≤ n− 1, i ≤ n− 2).

If L′(vi−1, vi−1vi)∩L
′(vi+1, vi+1vi) 6= ∅, we set σ0(vi−1, vi−1vi) = σ0(vi+1, vi+1vi) =

αi for some αi ∈ L′(vi−1, vi−1vi) ∩ L′(vi+1, vi+1vi).
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Otherwise, since |L(v, vu)| ≥ max(p + 3, 7) for every incidence (v, vu) of
Cn ⊙ pK1, which implies |L′(vi−1, vi−1vi)| ≥ max(p, 4) and |L′(vi+1, vi+1vi)| ≥
max(p, 4), so that |L′(vi−1, vi−1vi) ∪ L′(vi+1, vi+1vi)| ≥ max(2p, 8), either there
exists some colour αi ∈ L′(vi−1, vi−1vi) \ L(vi, viv

p
i ), in which case we set

α0(vi−1, vi−1vi) = αi, or there exists some colour αi ∈ L′(vi+1, vi+1vi)\L(vi, viv
p
i ),

and we set α0(vi+1, vi+1vi) = αi.

By construction, the partial L-list incidence colouring σ0 clearly satisfies Prop-
erty (P’).

(b) We now colour the remaining uncoloured incidences of Cn, which can be done
since every such incidence has at most four already coloured adjacent inci-
dences. Thanks to Property (P’), and since at least one of the external in-
cidences of each vertex vi has been coloured in the previous step, the partial
L-list incidence colouring σ0 thus obtained satisfies Property (P).

2. We now extend the partial L-list incidence colouring σ0 to an L-list incidence colour-
ing σ of Cn ⊙ pK1. The only remaining uncoloured incidences are the internal and
external incidences of pendent vertices (except (v0, v0v

1
0) and (v10, v

1
0v0) if we are in

the pre-coloured case, which are already coloured by a and b, respectively).

We proceed as follows. If we are in the pre-coloured case, then we first colour
the incidences (v0, v0v

2
0), . . . , (v0, v0v

p
0), in that order, otherwise we first colour

the incidences (v0, v0v
1
0), . . . , (v0, v0v

p
0), in that order. Then, for each vertex vi,

1 ≤ i ≤ n− 1, we colour the incidences (vi, viv
1
i ), . . . , (vi, viv

p
i ), in that order. This

can be done since, doing so,

(a) every incidence (vi, viv
j
i ), 1 ≤ j ≤ p − 1, has j + 3 ≤ p + 2 already coloured

adjacent incidences (recall that |L(vi, viv
j
i )| ≥ p+ 3), and

(b) thanks to Property (P) (and to the fact that |L(v0, v0v
p
0)∩{a, b, c, d}| ≤ 2 if we

are in the precoloured case), the incidence (vi, viv
p
i ) has at most p+2 forbidden

colours.

We finally colour all the uncoloured incidences of the form (vji , v
j
i vi), 0 ≤ i ≤ n− 1,

1 ≤ j ≤ p, which can be done since every such incidence has p+ 2 already coloured
adjacent incidences.

This completes the proof. �

We now able to prove the main result of this section. Let G be a cactus, and C be a cycle
in G. We say that C is a maximal cycle if C contains a vertex v with degG(v) = ∆(G).

Theorem 16 Let G be a cactus which is neither a tree nor a cycle. We then have

chi(G) ≤























∆(G) + 2, if ∆(G) = 3,
∆(G) + 1, if ∆(G) = 4 and G has no maximal cycle,
∆(G) + 2, if ∆(G) = 4 and G has a maximal cycle,
max(∆(G) + 1, 7), if ∆(G) ≥ 5 and G has at most one maximal 3-cycle,
max(∆(G) + 1, 8), otherwise.
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Proof. Let L be a list assignment of G such that |L(v, vu)| = k for every incidence (v, vu)
of G, where k is the value claimed in the statement of the theorem.

Let C1, . . . , Cℓ, ℓ ≥ 1, denote the cycles in G, and M denote the graph obtained from G
by contracting each cycle Ci into a vertex ci. The graph M is clearly a tree. Let us call
each vertex ci in M a cycle vertex and each other vertex in M , if any, a normal vertex.
Moreover, if G contains a maximal 3-cycle, we assume without loss of generality that this
cycle is C1. We now order all the vertices of M , starting with c1, in such a way that each
vertex v 6= c1 has exactly one neighbour among the vertices preceding v in the order (this
can be done since M is a tree).

We now colour the incidences of G according to the ordering of the vertices of M as
follows. Let v be the vertex of M to be treated. We have two cases to consider.

1. v is a cycle vertex of M .
Let v = ci, 1 ≤ i ≤ ℓ. We then colour all the incidences of the subgraph Hi of
G induced by the vertices of the cycle Ci and their neighbours. The subgraph Hi

is a subgraph of some generalized corona and thus, thanks to Observation 1 and
Lemma 15, all the incidences of Hi can be coloured.

2. v is a normal vertex of M .
In that case, v is also a vertex in G. We colour the uncoloured internal incidences
of v, if any, and then the uncoloured external incidences of v, if any, in that order.
This can be done since, doing so, every such incidence has at most ∆(G) already
coloured adjacent incidences.

This concludes the proof. �

Note that thanks to Proposition 3, the bound given in Theorem 16 is tight for every
cactus G such that ∆(G) ≥ 7, or ∆(G) = 6 and G has at most one maximal 3-cycle, or
∆(G) = 4 and G has no maximal cycle.

6 Hamiltonian cubic graphs

By Proposition 4, we know that chi(G) ≤ 7 for every graph with maximum degree 3. We
prove in this section that this bound can be decreased to 6 for Hamiltonian cubic graphs.
(Recall that by the result of Maydanskyi [10], χi(G) ≤ 5 for every cubic graph.)
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Let G be a Hamiltonian cubic graph of order n (n is necessarily even) and CG =
v0v1 . . . vn−1v0 be a Hamilton cycle in G. The set of edges F = E(G) \ E(CG) is thus a
perfect matching. We denote by FG the subgraph of G induced by F . Let vi, 0 ≤ i ≤ n−1,
be a vertex of G. The matched vertex of vi (with respect to CG) is the unique vertex vj
such that vivj ∈ F . The antipodal vertex of vi (with respect to CG) is the vertex vi+n

2

(subscripts are taken modulo n). Two vertices x and y of G are consecutive (with respect
to CG) if there exists some i, 0 ≤ i ≤ n− 1, such that {x, y} = {vi, vi+1} (subscripts are
taken modulo n).

We first prove the following easy lemma.

Lemma 17 If G is a Hamiltonian cubic graph of order n ≥ 6 and CG = v0v1 . . . vn−1v0
a Hamilton cycle in G, then there exists a vertex vi in G, 0 ≤ i ≤ n− 1, such that vi+2 is
not the matched vertex of vi.

Proof. If v2 is not the matched vertex of v0 then v0 satisfies the required property.
Otherwise, since n ≥ 6, v2 satisfies the required property. �

We now prove the main result of this section.

Theorem 18 For every Hamiltonian cubic graph G, chi(G) ≤ 6.

Proof. Let G be a Hamiltonian cubic graph, CG = v0v1 . . . vn−1v0 be a Hamilton cycle in
G, and L be any list assignment of G such that |L(v, vu)| = 6 for every incidence (v, vu)
of G. In the following, subscripts are always taken modulo n.

Note first that if n = 4, then G = K4 and the result follows from Lemma 13. We thus
assume n ≥ 6. Each vertex vi, 0 ≤ i ≤ n − 1, has three neighbours in G, namely vi−1,
vi+1 and the matched vertex v′i = vj of vi, j ∈ {0, . . . , n} \ {i − 1, i, i + 1}. Let vs and
vt denote the matched vertices of v0 and v1, respectively. Without loss of generality, we
may assume that v0 satisfies the statement of Lemma 17, so that vs 6= v2.

The following claim will be useful for constructing an L-list incidence colouring of G.

Claim 3 There exist a ∈ L(v1, v1vt), b ∈ L(vs, vsv0), c ∈ L(v2, v2v1), d ∈ L(v0, v0vs) and
e ∈ L(vt, vtv1), with a 6= c, a 6= e and b 6= d, such that

|L(v0, v0v1) ∩ {a, b}| ≤ 1, and |L(v1, v1v0) ∩ {c, d, e}| ≤ 1.
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vn−1 v0 v1 v2

vs vt

c
d

b

a

e

Figure 12: Configuration for the proof of Claim 3.

Proof. We first deal with the incidence (v1, v1v0) and set the values of c, d and e (see
Figure 12). Let C = L(v2, v2v1), D = L(v0, v0vs) and E = L(vt, vtv1). If C ∩D ∩ E 6= ∅,
then we set c = d = e = γ for some γ ∈ C ∩D ∩ E, so that |L(v1, v1v0) ∩ {c, d, e}| ≤ 1.

Otherwise, we consider two cases.

1. If C, D and E are pairwise disjoint, then at least two of them are distinct from
L(v1, v1v0), so that we can choose c, d and e in such a way that |L(v1, v1v0) ∩
{c, d, e}| ≤ 1.

2. Suppose now that C ∩ D 6= ∅ (the cases C ∩ E 6= ∅ and D ∩ E 6= ∅ are similar).
We first set c = d = γ for some γ ∈ C ∩ D. If γ ∈ L(v1, v1v0), then there
exists ε ∈ E \ L(v1, v1v0) (since (C ∩ D) ∩ E = ∅) and we set e = ε, so that
|L(v1, v1v0) ∩ {c, d, e}| ≤ 1. If γ /∈ L(v1, v1v0), then we set e = ε for any ε ∈ E and
we also get |L(v1, v1v0) ∩ {c, d, e}| ≤ 1.

We now deal with the incidence (v0, v0v1) and set the values of a and b. Let L′(v1, v1vt) =
L(v1, v1vt)\{e, c} and L′(vs, vsv0) = L(vs, vsv0)\{d}. If L

′(v1, v1vt)∩L
′(vs, vsv0) 6= ∅, then

we set a = b = α for some α ∈ L′(v1, v1vt)∩L′(vs, vsv0), so that |L(v0, v0v1)∩ {a, b}| ≤ 1.
Otherwise, as |L(v, vu)| = 6 for every incidence (v, vu) of G, which implies |L′(v1, v1vt)| ≥
4 and |L′(vs, vsv0)| ≥ 5, we get |L′(v1, v1vt) ∪ L′(vs, vsv0)| ≥ 9. Therefore, either there
exists some colour α ∈ L′(vs, vsv0) \ L(v0, v0v1), in which case we set b = α, so that
|L(v0, v0v1) ∩ {a, b}| ≤ 1 for any value of a, or there exists some colour α ∈ L′(v1, v1vt) \
L(v0, v0v1), in which case we set a = α, so that |L(v0, v0v1) ∩ {a, b}| ≤ 1 for any value of
b. This completes the proof of Claim 3. �

We now construct an L-list incidence colouring σ of G in three steps.

1. We first set σ(v1, v1vt) = a, σ(vs, vsv0) = b, σ(v2, v2v1) = c, σ(v0, v0vs) = d and
σ(vt, vtv1) = e, where a, b, c, d and e are the values determined in the proof of
Claim 3.
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2. We colour all the uncoloured incidences of the perfect matching F = E(G)\E(CG).
This can be done since every such incidence has at most two already coloured
adjacent incidences (indeed, only the lastly coloured incidence of the edge v2v

′

2,
where v′2 is the antipodal vertex of v2, will have two already coloured adjacent
incidences).

3. We finally colour all the uncoloured incidences of CG (the only incidence of CG

already coloured is (v2, v2v1)) as follows.

• We first colour the incidence (v1, v1v2), which has four already coloured adja-
cent incidences.

• We then cyclically colour the incidences of CG from (v2, v2v3) to (v0, v0vn−1).
This can be done since, doing so, every such incidence has four or five already
coloured adjacent incidences.

• By Claim 3, the incidence (v0, v0v1) has at most five forbidden colours and can
thus be coloured. Similarly, thanks to Claim 3, the incidence (v1, v1v0) has at
most five forbidden colours and can thus be coloured.

This completes the proof of Theorem 18. �

By Observation 1, we get the following corollary of Theorem 18.

Corollary 19 If G is a Hamiltonian graph with maximum degree 3, then chi(G) ≤ 6.

7 Discussion

In this paper, we have introduced and studied the list version of incidence colouring.
We determined the exact value of – or upper bounds on – the incidence choice number of
several classes of graphs, namely square grids, Halin graphs, generalized coronae of cycles,
cactuses and Hamiltonian cubic graphs. Following the work presented here, we propose
the following problems:

1. Is it true that chi(Gm,n) = 6 for every square grid Gm,n with m ≥ n ≥ 3?

2. What is the best possible upper bound on the list incidence chromatic number of
Halin graphs with maximum degree 3, 4 or 5? (Theorem 14 gives the exact bound
only for Halin graphs with maximum degree k ≥ 6.)

3. What is the best possible upper bound on the list incidence chromatic number
of cactuses with maximum degree 6? with maximum degree 5 and containing at
most one maximal cycle? with maximum degree 4 and containing a maximal cycle?
[Theorem 16 gives the exact bound for all other cases.)
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4. What is the best possible upper bound on the list incidence chromatic number
of graphs with bounded maximum degree? In particular, what about graphs with
maximum degree 3? (By Proposition 4, we know that this bound is at most 3k−2 for
graphs with maximum degree k ≥ 2, and thus at most 8 for graphs with maximum
degree 3.)

5. What is the value of chi(Kn)? (By Proposition 4, we know that this value is at most
3n− 5.)

6. Which classes of graphs satisfy the incidence version of the list colouring conjecture,
that is, for which graphs G do we have chi(G) = χi(G)? (By Proposition 3 and
Theorem 6, we know for instance that this equality holds for every tree.)
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