A new explicit formula for a square-triangular numbers

Sadek BOUROUBI

Faculty of Mathematics, Laboratory L'IFORCE, University of Sciences and Technology Houari Boumediene (USTHB), P.B. 32 El-Alia, Bab-Ezzouar, 16111 Algiers, Algeria.
sbouroubi@usthb.dz or bouroubis@gmail.com

Abstract

In 1770, Euler looked for positive integers n and m such that $n(n+1) / 2=m^{2}$. Integer solutions for this equation produce what he called square-triangular numbers. In this paper, we present a new explicit formula for this kind of numbers and establish a link with balancing numbers.

Keywords: Triangular number; Square number; Square-triangular number; Balancing number.

1 Introduction

A triangular number counts objects arranged in an equilateral triangle. The first fifth triangular numbers are $1,3,6,10,15$, as shown in Figure 1. Let T_{n} denote the $n^{\text {th }}$ triangular number, then T_{n} is equal to the sum of the n natural numbers from 1 to n, i.e.,

$$
T_{n}=1+\cdots+n=\frac{n(n+1)}{2}=\binom{n+1}{2}
$$

Figure 1: The first five triangular numbers

Similar considerations lead to square numbers which can be thought of as the numbers of objects that can be arranged in the shape of a square. The first fifth square numbers are $1,4,9,16,25$, as shown in Figure 2. Let S_{n} denote the $n^{t h}$ square number, then we have

$$
S_{n}=n^{2}
$$

Figure 2: The first five square numbers

A square-triangular number is a number which is both a triangular and square number. The firsts non-trivial square-triangular number is 36 , see Figure 3. A square-triangular number is a positive integer solutions of to the diophantine equation:

$$
\begin{equation*}
\frac{n(n+1)}{2}=m^{2} \tag{1}
\end{equation*}
$$

Figure 3: The first non-trivial square-triangular number

2 Main results

Lemma 1 Let S be the set of solutions of Equation (1). Then $(n, m) \in S$ if, and only if

$$
n=\sum_{i=0}^{k-1}\binom{2 k}{2 i+2} 2^{i} \quad \text { and } m=\sum_{i=-1}^{k-2}\binom{2 k}{2 i+3} 2^{i}, \text { for } k \in \mathbb{N}^{*}
$$

Proof. From Equation (1), we have

$$
\begin{equation*}
n^{2}+n-2 m^{2}=0 . \tag{2}
\end{equation*}
$$

Equation (2) can be rewritten as follows:

$$
\begin{equation*}
(2 n+1)^{2}-2(2 m)^{2}=1 \tag{3}
\end{equation*}
$$

Letting $x=2 n+1$ and $y=2 m$, Equations (3) becomes the Pell equation:

$$
\begin{equation*}
x^{2}-2 y^{2}=1 \tag{4}
\end{equation*}
$$

It is well known, that the form $x^{2}-2 y^{2}$ is irreducible over the field \mathbb{Q} of rational numbers, but in the extension field $\mathbb{Q}(\sqrt{2})$ it can be factored as a product of linear factors
$(x+y \sqrt{2})(x-y \sqrt{2})$. Using the norm concept for the extension field $\mathbb{Q}(\sqrt{2})$, Equation (4) can be written in the form:

$$
\begin{equation*}
N(x+y \sqrt{2})=1 \tag{5}
\end{equation*}
$$

It is easily checked that the set of all numbers of the form $x+y \sqrt{2}$, where x and y are integers, form a ring, which is denoted $\mathbb{Z}[\sqrt{2}]$. The subset of units of $\mathbb{Z}[\sqrt{2}]$, which we denote \mathcal{U} forms a group. It is easy to show that $\alpha \in \mathcal{U}$ if and only if $N(\alpha)= \pm 1$ [3]. Applying Dirichlet's Theorem, we can show that $\mathcal{U}=\left\{ \pm(1+\sqrt{2})^{k}, k \in \mathbb{Z}\right\}$.
Since

$$
\begin{equation*}
N\left((1+\sqrt{2})^{k}\right)=(N(1+\sqrt{2}))^{k}=(-1)^{k} \tag{6}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
N(\alpha)=1 \Leftrightarrow \alpha=(1+\sqrt{2})^{2 k}, k \in \mathbb{Z} \tag{7}
\end{equation*}
$$

Thus, all integral solutions of Equation (4) are given by:

$$
\begin{align*}
x+\sqrt{2} y & =(1+\sqrt{2})^{2 k} \\
& =\sum_{i=0}^{2 k}\binom{2 k}{i} 2^{i / 2} \\
& =\left(\sum_{i=0}^{k}\binom{2 k}{2 i} 2^{i}\right)+\sqrt{2}\left(\sum_{i=0}^{k-1}\binom{2 k}{2 i+1} 2^{i}\right) . \tag{8}
\end{align*}
$$

We get, after identification

$$
2 n+1=x=\sum_{i=0}^{k}\binom{2 k}{2 i} 2^{i}
$$

and

$$
2 m=y=\sum_{i=0}^{k-1}\binom{2 k}{2 i+1} 2^{i} .
$$

Equivalently, we have

$$
n=\sum_{i=0}^{k-1}\binom{2 k}{2 i+2} 2^{i}
$$

and

$$
m=\sum_{i=-1}^{k-2}\binom{2 k}{2 i+3} 2^{i}
$$

This completes the proof.

We have thus proved, via Lemma 2, the following theorem.

Theorem 2 Let $S T_{n}$ denotes the $n^{\text {th }}$ square-triangular number. Then

$$
S T_{n}=S_{m}=T_{N},
$$

where

$$
m=\sum_{i=-1}^{n-2}\binom{2 n}{2 i+3} 2^{i} \quad \text { and } \quad N=\sum_{i=0}^{n-1}\binom{2 n}{2 i+2} 2^{i}
$$

3 A link between square-triangular numbers and balancing numbers

Behera and Panda [1] introduced balancing numbers $m \in \mathbb{Z}^{+}$as solutions of the equation:

$$
\begin{equation*}
1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r) . \tag{9}
\end{equation*}
$$

Theorem 3 Let B_{n} be the $n^{\text {th }}$ balancing number. Then

$$
S T_{n}=B_{n}^{2} .
$$

Proof. By making the substitution $m+r=n$, with $n \geq m+1$, Equation 9 becomes

$$
\begin{equation*}
1+2+\cdots+(m-1)=(m+1)+(m+2)+\cdots+n . \tag{10}
\end{equation*}
$$

Therefore
m is a balancing number $\Longleftrightarrow 1+2+\cdots+(m-1)=(1+2+\cdots+n)-(1+2+\cdots+m)$

$$
\Longleftrightarrow \frac{m(m-1)}{2}=\frac{n(n+1)}{2}-\frac{m(m+1)}{2}
$$

$$
\Longleftrightarrow \frac{m(m-1)}{2}+\frac{m(m+1)}{2}=\frac{n(n+1)}{2}
$$

$$
\Longleftrightarrow m^{2}=\frac{n(n+1)}{2}
$$

$\Longleftrightarrow m^{2}$ is a square-triangular number
This completes the proof.

Table 1 bellow summarizes the first ten square-triangular numbers with there associated triangular and balancing numbers, based on Theorem 2 and Theorem 3.

n	$N=\sum_{i=0}^{n-1}\binom{2 n}{2 i+2} 2^{i}$	$T_{N}=\frac{N(N+1)}{2}$	$B_{n}=\sum_{i=-1}^{n-2}\binom{2 n}{2 i+3} 2^{i}$	$S T_{n}=B_{n}^{2}$
1	1	1	1	1
2	8	36	6	36
3	49	1225	35	1225
4	288	41616	204	41616
5	1681	1413721	1189	1413721
6	9800	1631432881	40391	16314300881
7	57121	55420693056	235416	55420693056
8	332928	1882672131025	1372105	1882672131025
9	1940449	63955431761796	7997214	63955431761796

Table 1: The first ten square-triangular numbers

4 Recurrence relations for square-triangular numbers

Theorem 4 The sequence of square-triangular numbers $\left(S T_{n}\right)_{n}$ satisfies the recurrence relation:

$$
S T_{n}=34 S T_{n-1}-S T_{n-2}+2, \text { for } n \geq 3
$$

with $S T_{1}=1$ and $S T_{2}=36$.
Proof. It is well known that the sequence of balancing numbers satisfies the following recurrence relations [1]:

$$
\begin{equation*}
B_{n+1}=6 B_{n}-B_{n-1} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n}^{2}-B_{n+1} B_{n-1}=1 \tag{12}
\end{equation*}
$$

Hence

$$
\begin{aligned}
B_{n}^{2} & =\left(6 B_{n-1}-B_{n-2}\right)^{2} \\
& =36 B_{n-1}^{2}-12 B_{n-1} B_{n-2}+B_{n-2}^{2}
\end{aligned}
$$

From Equation (11), we get

$$
\begin{aligned}
B_{n}^{2} & =36 B_{n-1}^{2}-12\left(\frac{B_{n}+B_{n-2}}{6}\right) B_{n-2}+B_{n-2}^{2} \\
& =36 B_{n-1}^{2}-2 B_{n} B_{n-2}-B_{n-2}^{2} \\
& =34 B_{n-1}^{2}-2\left(B_{n} B_{n-2}-B_{n-1}^{2}\right)-B_{n-2}^{2}
\end{aligned}
$$

From Equation (12), we get

$$
B_{n}^{2}=34 B_{n-1}^{2}-B_{n-2}^{2}+2
$$

This completes the proof according to Theorem 3.

5 Generating function for square-triangular numbers

In this section, we present the generating function based on some relations on balancing numbers.

Theorem 5 The generating function of $S T_{n}$ is:

$$
f(x)=\frac{x(1+x)}{(1-x)\left(x^{2}-34 x+1\right)} .
$$

Proof. Let $f(x)=\sum_{n \geq 1} S T_{n} x^{n}$. Then

$$
34 x f(x)=\sum_{n \geq 2} 34 S T_{n-1} x^{n}
$$

and

$$
x^{2} f(x)=\sum_{n \geq 3} S T_{n-2} x^{n}
$$

Therefore

$$
\begin{aligned}
34 x f(x)-x^{2} f(x) & =34 x^{2}+\sum_{n \geq 3}\left(34 S T_{n-1}-S T_{n-2}\right) x^{n} \\
& =34 x^{2}+\sum_{n \geq 3}\left(34 S T_{n-1}-S T_{n-2}+2\right) x^{n}-2 \sum_{n \geq 3} x^{n}
\end{aligned}
$$

By Theorem 6, we have

$$
\begin{aligned}
34 x f(x)-x^{2} f(x) & =34 x^{2}+\sum_{n \geq 3} S T_{n} x^{n}-2\left(\frac{1}{1-x}-1-x-x^{2}\right) \\
& =34 x^{2}+\left(f(x)-x-36 x^{2}\right)-2\left(\frac{1}{1-x}-1-x-x^{2}\right) \\
& =f(x)-\frac{x(1+x)}{1-x}
\end{aligned}
$$

Hence

$$
\left(1-34 x+x^{2}\right) f(x)=\frac{x(1+x)}{1-x}
$$

This completes the proof.
By using the generating function we can have the following equivalent explicit formula for the sequence of square-triangular numbers $\left(S T_{n}\right)_{n}$ that may be convenient to include.

Theorem 6 For $n \geq 1$, we have

$$
S T_{n}=\frac{(17+12 \sqrt{2})^{n}+(17-12 \sqrt{2})^{n}-2}{32}
$$

Proof. From expanding the generating function of $S T_{n}$ in partial fractions, we obtain

$$
f(x)=\frac{1}{16(x-1)}+\frac{12 \sqrt{2}-17}{32(12 \sqrt{2}-17+x)}+\frac{12 \sqrt{2}+17}{32(12 \sqrt{2}+17-x)} .
$$

Therefore

$$
\begin{aligned}
f(x) & =-\frac{1}{16} \sum_{n \geq 0} x^{n}+\frac{1}{32} \sum_{n \geq 0} \frac{(-x)^{n}}{(-17+12 \sqrt{2})^{n}}+\frac{1}{32} \sum_{n \geq 0} \frac{x^{n}}{(17+12 \sqrt{2})^{n}} \\
& =-\frac{1}{16} \sum_{n \geq 0} x^{n}+\frac{1}{32} \sum_{n \geq 0}(17+12 \sqrt{2})^{n} x^{n}+\frac{1}{32} \sum_{n \geq 0}(17-12 \sqrt{2})^{n} x^{n} .
\end{aligned}
$$

Then

$$
S T_{n}=-\frac{1}{16}+\frac{1}{32}(17+12 \sqrt{2})^{n}+\frac{1}{32}(17-12 \sqrt{2})^{n} .
$$

Hence, the result follows.

References

[1] A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quarterly, 37 (1999), 98 - 105.
[2] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, 1966.
[3] S. Bouroubi and A. Debbache, Some results on balancing, cobalancing, (a, b)-type balancing and, (a, b)-type cobalancing, numbers, INTEGERS 13 (2013).

