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Abstract: The flawless functioning of a protein is essentially linked to
its own three-dimensional structure. Therefore, the prediction of a protein
structure from its amino acid sequence is a fundamental problem in many
fields that draws researchers attention. This problem can be formulated
as a combinatorial optimization problem based on simplified lattice models
such as the hydrophobic-polar model. In this paper, we propose a new
hybrid algorithm combining three different well-known heuristic algorithms:
genetic algorithm, tabu search strategy and local search algorithm in order
to solve the PSP problem. Regarding the assessment of suggested algorithm,
an experimental study is included, where we considered the quality of the
produced solution as the main quality criterion. Furthermore, we compared
the suggested algorithm with state-of-the-art algorithms using a selection of
well-studied benchmark instances.
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1 Introduction

In Molecular biology, the three dimensional structure of proteins is the most crucial in-
dicator that determines their biological activity. The prediction of the tertiary structure
of proteins, also called a conformation, is a fundamental problem in the fields of biology,
physics, etc. This problem is famous for protein structure prediction and denoted by PSP.
A small modification in the original conformation of any given protein or an error during
its folding causes many serious diseases, such as Alzheimer and cow mad. The ideal so-
lution to treat these diseases is to predict the tertiaries structures of these proteins from
their primary structure [9]. The PSP is one of the hardest problems in computational
biology, molecular biology, biochemistry and physics. Furthermore, The most efficient
algorithm for feasible solution determination runs in an an considerable time required;
whereas the correct functioning of a protein depends essentially on its minimal energy
conformation. Among the existing models in literature, the most studied in PSP prob-
lem is the H-P model (Hydrophobic Polar, H-P) [16].In this model the free energy of a
conformation is inversely proportional to the number of hydrophobic non-local bonds of
H-H type (topological contacts H-H). This type of bonds occurs if two non-consecutive
hydrophobic monomers occupy adjacent grid points in the lattice. Besides, each occur-
rence of this bond type reduces the value of global energy with one unit [17]. The PSP
is an optimization problem where the aim is to find a confirmation c∗ of a given protein
sequence that minimizes the overall induced energy in all possible set of conformations
C, i.e., a conformation c∗ such that E(c∗) = min{E(c)/c ∈ C}[22], where E(c) represent
the energy function explained later in Section 2.2.

As we mentioned above, the H-H bonds reduces the induced energy. Hence, finding a mini-
mal energy conformation (i.e., optimal conformation) amounts to find a conformation that
maximizes the number of H-H contacts [17]. As one may expect, the resolution of this
problem is quite difficult due to the exponential exploration of the NP-hard problem solv-
ing when the chain size is large enough. The problem is proven to be NP-hard even when
restricted to its two dimensional representation [2].Hence, it is clearly impossible to enu-
merate all the possible conformations when the chain of amino acids is considerably large.
Several metaheuristics were proposed to solve the PSP problem. In the two-dimensional
square lattice, the first genetic algorithm has been introduced by Unger and Moult [25],
and than followed by other versions, see [8, 13, 15]. Similarly, an ant colony optimization
(ACO) algorithm has been used by Shmygelska et al. [20, 21, 22]. Moreover, the use of
memetic algorithms was proposed in [14, 18]. Particle Swarm Optimization algorithms
has been applied in [5]. Jiang, T. et al. proposed a hybrid approach combining tabu
search and genetic algorithm [12]. The Immune algorithms are introduced by Cutello et
al. in [6, 7]. A Clustered memetic algorithm with local heuristics have been introduced
by Islam et al. in [11].

This paper is organized as follows: in the next section, we present the two dimensional
triangular lattice using the H-P model, that we are interested in, where we present a
corresponding 0-1 mathematical program while focusing on: the objective function and
the encoding solutions. In Section 3 we present a selection of pertinent algorithms de-
signed to solve the PSP problem in 2D triangular lattice model. In Section 3, we present a
detailed description of the suggested hybrid algorithm. In Section 4, we present the exper-
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imental study and the obtained results, where we compared our approach some existing
approaches. Finally, we give, in Section 6, our main conclusions of this study.

2 Hydrophobic-polar model in a 2D triangular lattice

Simplified

In H-P model, the twenty amino acids are represented by a mean of two letters H and P, in
reference to their hydrophobicity chosen among the tow following options : hydrophobic
or hydrophilic [16]. For any given sequence of n amino acids, the H-P model consists to
transform this sequence into a chain s = (s1, s2, . . . , sn) such that each element of the
sequence si ∈ {H,P}, i = 1, n represents the hydrophobicity of the corresponding amino
acids in protein sequence:

si =

{

H if the amino acid i is of hydrophobic type,

P if the amino acid i is of polar type.

As it is shown in Figure 1, each vertex of the two dimensional triangular lattice has six
neighbors. Hence, each monomer different from the first and the last element of the chain,
i.e., monomers of rank i = 2, n− 1, occupying any given position in the lattice can be at
most in four topological contacts, in other words, it can form at most four bonds with its
neighbors. Whereas maximal number of possible contacts that can occur in a monomer
located either in the first or the last position is five [1]. The symbols 1, 2, 3, 4, 5, 6 are used
to encode the following movement directions on the two dimensional triangular lattice:
Right-Up, Up, Left-Up, Left-Down, Down and Right-Down, respectively.

1

2

3

4

5

6

b

Figure 1: Illustration of the six neighbors of a node in the 2D triangular lattice model.

Figure 2 represents an feasible conformation in the 2D triangular lattice model for a pro-
tein sequence of 20 amino acids given in the HP model by (HP )2PH(HP )2(PH)2HP (PH)2.
The green points represent the hydrophilic amino acids while the hydrophobic amino acids
are represented in red. The energy of the conformation given in Figure 2 is E(s) = −15
(15 contacts of H-H type).
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Figure 2: Representation of an feasible conformation for the sequence
(HP )2PH(HP )2(PH)2HP (PH)2 in the 2D triangular lattice.

2.1 Encoding Solution

A feasible solution can be represented by the sequence of n− 1 movements in the lattice
called self-avoiding paths, (see Figure 1) that generate this conformation. For example,
the corresponding movements vector to the solution S, given in Figure 2 is as follow:

mv(S) = [2, 6, 2, 6, 5, 4, 5, 1, 5, 6, 2, 6, 2, 3, 2, 1, 5, 1, 5].

The sequence mv(S) allows us to deduce the position of each amino acid in the lattice.

2.2 Calculation of free energy

Given a feasible protein conformation of n amino acids and let s be its corresponding
sequence in the HP model. The folding quality of this of this conformation is measured
by the following energy function [17]:

E(s) = −
n−2
∑

i=1

n
∑

j=i+2

δij xij ,

where δij represents an indicator that determines whether both elements si and sj are
hydrophobic.

δij =

{

1; if (si = H) ∧ (sj = H),

0; otherwise,
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and

xij =

{

1; if the amino acids i and j form an H-H topological contact,

0; otherwise.

2.3 Mathematical program for the PSP

In the rest of this section, we present a mathematical program for the Protein Folding
Problem (PSP) in its 2D triangular lattice model form. The aim here is to construct a
linear mathematical program that can be implemented in modeling languages and com-
patible with the existing software solvers. Each node in a 2D triangular lattice blue
located in a given position (i, j) has six neighbors represented in a grid on a canonical
basis. Considering the following possible neighboring directions of (i, j) node:

(i, j)

(i+ 1, j)

(i+ 1, j + 1)

(i− 1, j + 1)

(i− 1, j)

(i− 1, j − 1)

(i+ 1, j − 1)

b

Figure 3: The six positions close to the position (i, j) in the 2D triangular lattice.

Let n be the length of the protein sequence, and let ykij be a three dimensional variable
such that:

ykij =

{

1, if the position (i, j) contains the kth amino acid in the protien sequence,

0, else.

2.3.1 Constraints

First, we fix the first amino acid in the protein sequence at position (n, n) as a starting
point, i.e.,

y1nn = 1.

Regarding the problem constraints, we can identify three different constraints that guar-
antees the admissibility of the resulting solution :
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1- A path in the grid is a solution if it occupies exactly n nodes in the grid. This constraint
can be written as follows:

n
∑

k=1

2n
∑

i=1

2n
∑

j=1

ykij = n.

2- A node in the grid can contain at most one amino acid at the kth position, hence:

n
∑

k=1

ykij ≤ 1, ∀i ∈ {1, . . . , 2n}, ∀j ∈ {1, . . . , 2n}.

3- A node in the grid can contain the amino acid in position k + 1, if and only if at least
one of its neighboring nodes contains the kth amino acid in the protein sequence:

yk+1

ij ≤ yki−1j+1+yki−1j+yki−1j−1+yki+1j−1+yki+1j+yki+1j+1, ∀i, j ∈ {1, . . . , 2n}, ∀k ∈ {1, . . . , n−1}.

2.3.2 The objective function

Let αk be a numerical interpretation of any given amino acid into a binary value (i.e.,
representation in {0, 1}), where:

αk =

{

1 if the kth amino acid in the protein sequence is hydrophobic, i.e., H,

0 if the kth amino acid in the protein sequence is hydrophilic , i.e., P.

Thus, the objective function can be calculated as follows:

max(Z) =
1

2
Z∗ −

n−1
∑

k=1

αkαk+1,

where

Z∗ = max
y







2n
∑

i=1

2n
∑

j=1

(

n
∑

k=1

αky
k
ij

)(

n
∑

k=1

αk

(

yki−1j+1 + yki−1j + yki−1j−1 + yki+1j−1 + yki+1j + yki+1j+1

)

)







.

This mathematical model guaranties optimal solution which is included in the grid en-
closed by the points {(1, 1), (1, 2n), (2n, 1), (2n, 2n)}, with a starting point (n, n). The
choice of these limit points is based on the fact that in a path graph Pn on the grid, the
maximal distance between the fixed starting node and the rest of the nodes (i.e., basically
for the end node) is at most equals to n − 1 movements. More precisely it represents
the radius of the graph, which is the number of edges in the case of a path graph Pn.
With the view to its spatial complexity O(n3), this model clearly has a rather high cost in
terms of memory. However, it provides a rather good equilibrium with the computational
complexity; since all variables are binary strings/arrays.
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3 Existing 2D H-P protein prediction algorithms

Recently a number of metaheuristcs have been used to solve the PSP in the 2D triangular
lattice model. In [10], the authors suggested a new hybrid algorithm, called Hybrid Ge-
netic Algorithm (HGA). This latter enhances the performance of a classical GA implemen-
tation by reducing the encountered through the generational process. More specifically, it
is clear that when the number of generations increases, the current conformations become
very compact. Hence, the application of genetic operators produces invalid conforma-
tions with considerable number of collisions. The proposed approach consists in using
the generalized short pull moves strategy to produce only valid conformations to avoid
blocking GA search processes. The authors have shown considerable quality improve-
ments when compared to a simple genetic algorithm implementation SGA [10]. Later on
in [4], the authors proposed new approach based on the tabu search algorithm using a
generalized local move (i.e., pull move) as to improve the landscape exploration and the
quality of the produced solutions.. Also, two approaches are proposed in [17], includ-
ing the Elite-based Reproduction Strategy-Genetic Algorithm (ERS-GA) ,and a Hybrid
of Hill climbing and Genetic Algorithm called HHGA that combine the ERS-GA with
a hill climbing algorithm.A new approach called IMOG has been proposed in [26], that
combines ions motion optimization algorithm (IMO) with a Greedy algorithm (G), the
obtained results shown that the IMOG algorithm has a good search ability and stability
for the PSP problem using benchmark data sets.

4 Novel hybrid approach for PSP problem

The most commonly used hybridization in literature consists of combining two metaheuris-
tics, one based on a single solution, known as s-metaheuristics, and the other based on a
population, known as p-metaheuristics. The s-metaheuristics have proved their effective-
ness for intensification, while the p-metaheuristics known by their exploration capacity.
Thus, this type of hybridization allows to establish a balance between the diversification
and the intensification of the search process [3, 19, 24].

In this work, we proposed a hybrid approach to solve the PSP problem, called GALSTS, in
reference to the adopted combination of the following metaheuristics: genetic algorithm,
local search, tabu search strategy. As all population-based approaches the first step of
GALSTS is to generate an initial population P of m feasible solutions, in which the
crossover operator is guided by a tabu list that allows to prohibiting previous movements
in order to explore new regions in the search space. Each two selected parent produces
a set of offsprings (i.e., f solutions) by applying the crossover procedure controlled by a
tabu list that contains all k crossover points that are already used. This has allowed us
to avoid cyclical movements.

In order to improve the quality of the children produced by the crossover process, each
one of them is introduced with a probability pm as an initial solution of a local search
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algorithm. Such that the transition from a solution s to one of its neighbors s′ is carried
out by a random choice of an amino acid i and replacing its direction by another one
among the five other possible directions. If the quality of s is better than s′, then it
becomes the courant solution for the next iteration. This process is repeated until the
satisfaction of the stops criterion. This improvement phase has allowed us to use the
information provided by parents more efficiently to produce high-quality solutions. The
two solutions with the highest fitness value are introduced into the new population Pnew

if they not exist in this population previously, although are of lower quality than their
parents to encourage exploration of the research space. The best m solutions of P ∪Pnew

are replaced the individuals in the population P for the next generation. This approach is
intended to avoid the rapid convergence towards local optima, and the wide diversification
between the solutions and thus ensures the quality of the solutions during all the stages
of the research space explorations, see Algorithm 1.

Algorithm 1 Suggested hybrid algorithm GALSTS

Require: A protein sequence of amino acids of size n.

Ensure: The best confirmation for the protein sequence.

begin

Initialization: P ← The initial population of m solutions;

while the stop criterion is not checked do

Create a new population by the flowing steps:

k ← 0, Pnew ← ∅;

while k ≤ m do

Select two parents (p1, p2) from P ;

offspring ← two solutions obtained by applying the algorithms (TS-LS)
to the selected parents;

if offspring does not exist in the new population Pnew then

Pnew ← Pnew ∪ {offspring};

k ← k + 1;

end if

end while

P ← the m best solution among P ∪ Pnew;

end while

end
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4.1 The Initial Population

We start with an initial population ofm randomly generated individuals. An initialization
algorithm was proposed that allows to generate only valid conformations for the initial
population of GALSTS, we use a list T that contains all the positions used for courant
solution, we put the first amino acid at one point in the lattice and save their position in
T. Then, for each amino acid we choose a random direction among the six directions as
shown in Figure 1. If the selected direction generates an already occupied position (i.e.,
existing in T); we generate another direction different from the selected one. If all the six
directions create an existing positions in T (i.e., all direction create invalid solution), we
generate a new solution, see Algorithm 2.

4.2 Crossover Operator

The crossover procedure consists to combine two or more solutions, called parents, as to
create other solutions, called offsprings. There are several types of the crossover operator,
here we opted for a random 1-point, which consists to swap after selecting two parents p1
and p2, and generating one random point c1, 1 < c1 < n, the parent subsequences limited
by c1 and n. As shown in Figure 4, the new two conformations (offsprings) f1 and f2, are
obtained by combining p1 and p2 after generating a random cut point (here c1 = 5). The
energy value of offspring f1 is E(f1) = −7, lower than the energy values of its parents,
E(p1) = −2 and E(p2) = −5.

4.3 Mutation Operator

Generally, it consists to modify some components, called genes, of an existing solution,
in order to introduce more diversity into the solutions, it generally applied with low
probability. In the proposed local search algorithm (see Algorithm 3), the neighbors of a
given solution are defined in a similar way with the mutation operator, but the performed
movement is accepted if it improves the quality of the courant solution. As shown in
Figure 5, the new conformation sm is obtained by exciting the current solution s at
the mutation point 10, changing the direction from 3 to 6. The energy value of sm is
E(sm) = −7, lower than the energy of s, E(s) = −5.
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Algorithm 2 Generation algorithm for the initial population

Require: n, the number of amino acids in the protein sequence.

Ensure: A feasible confirmation for the protein sequence.

begin

Initialization: T ← Table of position for each amino acids in lattice;

T [1]← (x1, y1), i.e., put the first monomer in one vertex of the lattice

i← 2;

while (i ≤ n) do

K ← {1, 2, 3, 4, 6}; the set of all possible directions on the 2D triangular lattice

t← true;

while (t = true) do

u← Random direction generated from the list K;

K ← K\{u};

(xi, yi)← Position generated by the direction u;

if (xi, yi) /∈ T then

t← false;

T [i]← (xi, yi);

else if (K = ∅) then

t← false;
i← 2;

end if

end while

end while

end
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Figure 4: Crossover operator applied on two conformations of the sequence
H2PH2P 2HPH2. The circled nodes indicate the cutting points positions.
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Figure 5: Mutation operator applied to the sequence H2PHP 2H2PH2. The circled node
indicate the position of the mutation point.

Algorithm 3 Local Search

Require: A feasible solution s, and its associated energy value E(s).

Ensure: The best found solution sbest.

begin

Initialization:

E(sbest)← E(s);

sbest ← s;

while the stopping criterion is not checked do

u← random point of mutation;

s← mutation(s, u);

Evaluate s, i.e., calculate E(s);

if E(s) < E(sbest) then

sbest ← s;

E(sbest)← E(s);

end if

end while

end
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4.4 Selection Operator

It is a technique that favorites the best solutions to participate in the reproduction phase,
in order to create new solutions with ”satisfactory” quality. In this work we will use
the roulette wheel selection technique (RWS). In this approach, each individual has a
probability of being selected in accordance with his or her performance, so the more
individuals are adapted to the problem, the more likely they are to be selected. The
probability of selecting a solution i among the m solutions is given by the following:

p(i) =
f(i)

m
∑

j=1

f(j)

·

The RWS is an iterative operator, where in each step (after the probability assignment),
it withdraws a random value form the range [0,1] (or [0,100], [0,360] depending on the
representation of the selection wheel), and then it selects the corresponding individual.
Table 1 presents an example of proportions assignment of four individuals according to
their fitness evaluation.

Figure 6 presents the circular representation (i.e., pie chart) of the obtained selection
probabilities in Table 1. As it is shown in Figure 6, the spinner indicates to select the
chromosome I2.

Individuals Fitness: fj % of the total sum

I1 3 7.5

I2 12 30

I3 5 12.5

I4 20 50

Total sum 40 100

Table 1: Illustrative example of 4 solutions adduced by their fitness evaluations and the
corresponding selection proportions.

7, 5%
37, 5%

50% 0.0%
I1

I2

I3

I4

bc

Figure 6: Roulette wheel selection.
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4.5 Generating an offspring by the guided search strategy

For the reproduction phase, we propose an efficient algorithm that guides the search
process to produce an offsprings of ”good” quality. This algorithm combines the Local
Search algorithm (LS) and the Tabu Search algorithm (TS). The role of the LS algorithm
is to improve the quality of the solutions obtained by the crossover process, and in order
to use the parent’s information more effectively and to explore more research space; we
propose to use the tabu search algorithm that memorizes the last points crossover used
for some parents selected, see Algorithm 4. The working mechanisms of the suggested
approach can be summarized by the following steps:

Step1 Generate n solutions for the initial population.

Step 2 Evaluate the fitness of each solution.

Step 3 Create a new population by the following steps:

Step3.1 Select two parents from the n solutions.

Step 3.2 Apply Algorithm 1, with a probability pc.

Step 3.3 Apply Algorithm 2, with a probability pm.

Step 3.4 Replace the previous population, with the current population.

Step 4 If the stopping criterion is not checked goto Step 2.
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Algorithm 4 The reproduction algorithm guided by the local search algorithm and the
tabu search strategy.

Require:Two selected parents p1, p2.

Ensure:Two individuals produced from parents, i.e., offsprings.

begin

Initialization:

E1 ← E(p1);

offspring∗1 ← p1;

E2 ← E(p2);

offspring∗2 ← p2;

T ←− ∅; // the tabu list

K ← 0;

while the stopping criterion is not checked do

K ← K + 1;

u← random point of crossover;

if u /∈ T then

(offspring1, offspring2)← crossover (p1, p2);

u1 ← random [0, 1];

if u1 ≤ pm then

offspring1 ← local search (offspring1);

offspring2 ← local search (offspring2);

end if

if (E(offspring1) < E1) then
offspring∗1 ← offspring1;

E1 ← E(offspring1);

end if

if (E(offspring2) < E2) then

offspring∗2 ← offspring2;

E2 ← E(offspring2);

end if

end if

T ←− T ∪ {u};

end while

return (offspring∗1, offspring
∗

2);

end
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5 Experimental Results

The aim of this section is to assess the performance of the suggested approach. For the fol-
lowing experimental study, we used a several benchmark instances (i.e., protein sequences)
presented in the H-P model of different sizes [8, 25]. Furthermore, we have selected the
most studied in the literature instances to conduct the forthcoming experiments. Table 2
is composed of 3 columns, the first one represents the number of the protein sequence, the
second represents the length of the protein sequence and the third represents the protein
sequence in the H-P model, where the symbol (.)i means i fold repetitions of the respective
subsequence in the brackets. For example, (PH)2 is the simplified form of the sequence
PHPH . The experimental results showed in Table 3 represents a comparison between
the best results obtained by the proposed approach, and the above stated algorithms used
to solve the PSP in the 2D triangular lattice model, namely HGA [10], TS [4], ERS-GA
[23], HHGA [23], IMOG [26] for each instance given in Table 2. We show that all the ap-
proaches can provide an optimal confirmation when the length of the sequence is less than
36. However, the results obtained by our approach are better than the other approaches
for the sequences 4, 6 and 7 as shown in Table 3 (see the respective conformation in Figure
9). However, The best prediction obtained by the algorithms GALSTS, TS , HHGA and
IMOG are better than the HGA algorithm, ERS-GA and SGA for all sequences used for
this experimental study.

Seq. Length Protein sequence in the H-P model

1 20 (HP )2PH(HP )2(PH)2HP (PH)2

2 24 H2P 2(HP 2)6H2

3 25 P 2HP 2(H2P 4)3H2

4 36 P (P 2H2)2P 5H5(H2P 2)2P 2H(HP 2)2

5 40 P 2H(P 2H2)2P 5H10P 6(H2P 2)2HP 2H5

6 50 H2(PH)3PH4PH(P 3H)2P 4(HP 3)2HPH4(PH)3PH2

7 60 P (PH3)2H5P 3H10PHP 3H12P 4H6PH2PHP

8 64 H12(PH)2((P 2H2)2P 2H)3(PH)2H11

9 85 H4P 4H12P 6(H12P 3)3HP 2(H2P 2)2HPH

10 100 P 3H2P 2H4P 2H3(PH2)3H2P 8H6P 2H6P 9HPH2PH11P 2H3PH2PHP 2HPH3P 6H3

Table 2: The used benchmark instances in the H-P model.

The experiment results, in Tables 3 and 4, represent a comparison between the best
results obtained by GALSTS, with some existing results based on several large benchmarks
found in the literature, solved by HGA and SGA [10], TS [4], ERS-GA [23], HHGA [23],
and IMOG [26] approaches. Clearly, the number of possible conformations increases
exponentially when the size of the instance increases. According to their energy values,
all approaches could provide an optimal confirmation when the size of the instance is
less than 36. But, as it is shown in Tables 3 and 4, the best conformations obtained by
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GALSTS are better than all the cited approaches bellow, based on the instances of size
up to 36. This demonstrates the ability of GALSTS to explore the search space more
effectively comparing with the other approaches.

Seq. Length SGA HGA TS ERS-GA HHGA IMOG GALSTS Conformation

1 20 -11 -15 -15 -15 -15 -15 -15 Fig7(a)

2 24 -10 -13 -17 -13 -17 -17 -17 Fig.7(b)

3 25 -10 -10 -12 -12 -12 -12 -12 Fig.7(c)

4 36 -16 -19 -24 -20 -23 -24 -24 Fig.7(d)

5 48 -26 -32 -40 -32 -41 -40 -43 Fig.7(e)

6 50 -21 -23 NA -30 -38 -40 -40 Fig.7(f)

7 60 -40 -46 -70 -55 -66 -67 -70 Fig.7(g)

8 64 -33 -46 -50 -47 -63 -63 -67 Fig.7(h)

9 85 NA NA NA NA NA NA -98 Fig.7(i)

10 100 NA NA NA NA NA NA -87 Fig.7(j)

Values in bold indicate the best obtained evaluation for the correspondent instance.

NA refers to not available data in literature.

Table 3: The best conformations obtained by GALSTS compared with other algorithms
for 10 H-P sequences in 2D triangular lattice model.

Instances larger than 64 are not covered in the literature for the 2D triangular lattice
model. However, they were processed for the rectangular model [27]. According to the
obtained results in Table 3, a strong improvement in energy appears clearly compared
with the triangular model. Table 4, graphically presented in Figure 7 and Figure 8, show
a performance comparison on the stability of our approach and three other algorithms
HHGA, IMOG and ERS-GA, such that the efficiency of the algorithms is measured by
the best and means results in 30 independent runs for each sequence. We show that for
the most instances, the proposed approach is able to find the best optimal solutions and
achieves a better average solution quality than other algorithms. the average solution
quality is very encouraging.

ERS-GA HHGA IMOG GALSTS

Seq. Length aBest aaMeanaa aBest aaMeanaa aBest aaMeanaa Best Mean

1 20 -15 -12.50 -15 -14.73 -15 -14.73 -15 -14.86

2 24 -13 -10.20 -17 -14.93 -17 -14.93 -17 -15.53

3 25 12 -8.47 -12 - 11.57 -12 -11.57 -12 -12

4 36 -20 -16.17 -23 -21.27 -23 -21.27 -24 -21.93

5 48 -32 -28.13 -41 - 37.30 -41 -37.30 -43 -39.86

6 50 -30 -25.30 -38 -34.10 -38 -34.10 -40 -37.6

7 60 -55 -49.43 -66 - 61.83 -66 -61.83 -70 -68.26

8 64 -47 -42.37 -63 - 56.53 -63 -56.53 -67 -58.46

Values in bold indicate the best obtained evaluation for the correspondent instance.

Table 4: A comparative study on the stability and the best prediction of the GALSTS
with other algorithms.
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Table 5 resumes the obtained results for 30 independent runs per each of the above stated
instances. The aim of this experiment is to compare the suggested algorithm GALSTS
against two competing algorithms ERS-GA and SGA. The results are adduced according
to the best and worst overall evaluation and their corresponding deviation from the best
known value (BKV). The proposed algorithm GALSTS is shown to be more effective than
the other competing algorithms; even when comparing its worst produced conformation
to their best ones, with a sole exception of the first tested sequence, where it shows a
slight difference. However, when increasing the size of the instance, it is clear that the
suggested algorithm is incrementally taking advantage over the competing algorithms,
even when comparing its worst solution to their best ones. Furthermore, the suggested
algorithm is shown to be able to attain good quality conformations or even optimal, with
a sole exception the sixth tested instance, where it shows a one unit deviation of the best
known evaluation.

GALSTS ERS-GA SGA

Seq. alengtha aE∗a aaaBest (dev. BKV) aaWorstaaa aaaBest (dev. BKV)aaa Best (dev. BKV)

1 20 -15 -15 (00) -14 -15 (00) -11 (04)

2 24 -17 -17 (00) -15 -13 (04) -10 (07)

3 25 -12 -12 (00) -12 -12 (00) -10 (02)

4 36 -24 -24 (00) -21 -20 (04) -16 (08)

5 48 -43 -43 (00) -38 -32 (11) -26 (17)

6 50 -41 -40 (01) -36 -30 (11) -21 (20)

7 60 - -70 (-) -65 -55 (-) -40 (-)

8 64 - -67 (-) -56 -47 (-) -33 (-)

Values in bold indicate the best obtained evaluation for the correspondent instance.

Table 5: Comparison between the results, the best and worst evaluations obtained by
GALSTS and the best results of SGA and ERS-GA. E∗ is the best energy value.
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Figure 7: Illustration of the comparison results regarding the mean energy obtained using
GALSTS against other algorithms.
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Figure 8: Illustration of the comparison results regarding the best predictions obtained
using GALSTS against other algorithms.

6 Conclusions and Perspectives

This paper presents an efficient approach called GALSTS for solving the protein structure
prediction in 2D triangular model using the simplified hydrophobic-polar model. An
initialization algorithm was proposed that allows to generate only valid conformations for
the initial population of GALSTS. This algorithm eliminates cyclic movements during the
construction of solutions. GALSTS consists in using Tabu and Local Search algorithm
to explore the search space handling more efficiently. This approach allows to use the
information provided by the selected parents to produce solutions with good quality.
From our experimental results, GALSTS was able to find the best known solutions and
it is more effective for the stability results than other existing algorithms. In terms of
future scope of applications, GALSTS can be used to solve the PSP problem in the 3D
cubic and 3D triangular models, it can also be used to solve other optimization problems
in the combinatorial optimization framework.
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Figure 9: (a) to (j) Results of the best conformation structure of ten protein sequences.
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