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Abstract : The Whale Optimization Algorithm (WOA) is a novel metaheuris-
tic algorithm inspired by the social hunting behavior of humpback whales. This
paper describes a binary version of the WOA applied to the Minimum Domi-
nating Set (MDS) problem, which is a challenging combinatorial optimization
problem that is known to be NP-hard. However, WOA has a drawback of
premature convergence, which may result in the algorithm becoming trapped
in local optima and failing to reach the global optimum. To overcome this limi-
tation, the paper proposes an enhanced version of WOA called the Local search
Optimization Binary Whale (Lobw) that incorporates a Local Search technique
to improve exploitation ability and prevent the algorithm from being trapped in
local optima. The Lobw algorithm is evaluated on several benchmark datasets,
and the results demonstrate its promising performance in terms of solution qual-
ity and stability when compared to other metaheuristic algorithms. The source
code of the Lobw algorithm and the datasets used in the experiments can be
accessed via the following link https://github.com/elkacem/LOBW-for-MDS.
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1 Introduction

One the most crucial problems in graph theory is known as the Minimum Dominating
Set. It is also an NP-hard problem that cannot be solved in polynomial time [1]. In an
undirected graph, G = (V,E), where V represents the set of vertices and E represents the
set of edges, a subset S of V is considered a dominating set of G if each vertex v ∈ V
is either an element of S or is adjacent to an element of S. This subset is referred to
as a dominating set of G, and it is said that S dominates G or that G is dominated by
S. The minimum cardinality of a dominating set in G is represented by γ(G), which is
called domination number. If S dominates G such that |S| = γ(G), then S is called the
Minimum Dominating Set, or MDS for short. So, the problem of dominating set involves
finding the value of γ(G) and identifying a dominating set that has the minimum number
of vertices. The mathematical model can be described as follows:

min f (x) =
∑
vi∈V

xi (1.1)

subject to:


∑

vj∈N [vi]

xj ≥ 1, ∀vi ∈ V

xi ∈ {0, 1}
(1.2)

where xi is a binary indicator that takes 1 if the vertex vi is part of the solution S, and 0
if it is not and N [vi] is the closed neighborhood of vi. The first set of constraints ensure
that every vertex is either in the minimum dominating set or has a neighbor in the set.

Minimum dominating sets, as well as their variations such as minimum connected dominat-
ing set and minimum weighted dominating set, have diverse applications in a wide range
of fields. These include ad hoc wireless networks [2], sensor networks, and MANETs [3] for
routing purposes, as well as determining main subject sentences for document summary
through sentence network design [4]. Additionally, MDS can be used to model and study
the positive impact in social networks [5], as well as control the spread of epidemics and
diagnose and control epidemic spreadings in various areas of human society, including virus
spread in computer systems, misinformation, and content diffusion through social media
[6]. MDS can also be found in biological aspects such as interacting protein networks and
biological network analysis [7].

This paper applies the Whale Optimization Algorithm (WOA) to solve the MDS problem.
The aim is to leverage the advantages of WOA, such as its low number of parameters and
high convergence rate. The proposed algorithm’s performance is evaluated on various data
sets and compared with some state-of-the-art techniques.

The rest of the paper is structured as follows: Section 2 presents related work, including
exact algorithms and heuristics, that have been applied to solving the MDS problem.
Section 3 describes the WOA algorithm. The proposed WOA algorithm is discussed in
section 4. Section 5 presents the experimental results, and finally, section 6 concludes the
paper and discusses some future research directions.



Minimum Dominating Set using an Enhanced Binary Whale Algorithm 3

2 Related works

Exact (exponential-time) approaches have been used extensively to study the MDS
problem, which is NP-hard [1, 8]. In addressing the MDS problem in a graph with n
vertices, numerous authors have recently suggested exact algorithms that surpass the naive
O(2n) which merely searches through all potential case subsets of V . Based on our current
information, the best exact algorithm for the MDS problem performs in O(1.4864n) time
and polynomial space. This algorithm was constructed through the measure and conquer
approach by Y. Iwata [9].

Unfortunately, the exact procedures that execute at an exponential scale are only viable for
small networks, greatly restricting their usefulness. As a result, scientific researchers have
focused mostly on stochastic computational heuristics and, more recently, metaheuristics.

This section provides a quick overview of heuristic-based minimum dominating set tech-
niques. These methods can be classified in a variety of ways. They can be either
nature-inspired or not [10]. Many metaheuristics are inspired by natural occurrences and
are classified into two types: (I) evolutionary algorithms and (II) swarm intelligence. In
nature, evolutionary algorithms employ the theory of biological evolution (e.g., crossover
and mutation). The communal and foraging behavior of ants, fireflies, whales, grasshop-
pers, and many other organisms and species in nature inspired swarm intelligence systems.
Metaheuristics inspired by non-natural events like Simulated Annealing (SA) [11] from
physics and Harmony Search (HS) [12] from musics.

In this regard, various heuristic approaches have been developed in the state of the art
to deal with the MDS problem, such as [13, 14, 15, 16]. After that L. A. Sanchis [17]
conducted an experimental study on various heuristic techniques. He has exhaustively
researched numerous greedy methods to the MDS problem.

Ant Colony Optimization (ACO) [18] is one of the most well-known swarm intelligence
algorithms. C. K. Ho et al., in [19], introduced ACO-TS, an upgraded Ant Colony
Optimization metaheuristic that incorporates a technique for promoting the construction
of various solutions based on a genetic algorithm notion termed tournament selection.

Genetic Algorithm (GA) is a traditional evolutionary algorithm [20]. The GA was initially
used to address the MDS issue in 2010 [21]. Two years later, the authors of [22] proposed
Simulated Annealing, one of physics most well-known single-solution based metaheuristics
inspired by non-natural phenomena. The SA metaheuristic addresses the MDS problem
by using a Stochastic Local Search (SLS) algorithm to reinforce a solution by searching
for a stronger one in its surroundings.

Later, in 2022, the authors [23] proposed a two-step hybrid local search algorithm that
hybridized local search techniques, local search as an exploratory technique in the initial
step, which focuses on developing promising solutions in various regions of the solution
space. They suggest another local search algorithm as an exploitation strategy for the
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second step. It navigates viable neighborhood locations in order to improve solution
quality.

3 Whale Optimization Algorithm

Whale Optimization Algorithm (WOA) is a population-based metaheuristic optimization
algorithm inspired by the hunting and feeding behavior of humpback whales. It was
introduced in 2016 [24] and used to solve optimization problems in various fields, such as
engineering, finance, and computer science.

WOA uses a combination of exploitation and exploration strategies to search for the
optimal solution. ”Bubble-net feeding” describes their technique of locating and pursuing
their prey. As illustrated in Figure 1, the humpback whales descend and then begin to
blow bubbles to enclose the fish, which are too terrified to swim through them. In the
meantime, the whales swim upward to the surface through the bubble net, devouring a
large number of fish in a single gulp. The behavior of bubble-net feeding is mathematically
represented as follows:

Figure 1: The bubble-net feeding behavior of a humpback whale.

3.1 Encircling Prey

Humpback whales are filter feeders and feed mainly on small fish and krill. They use their
position to find, surround and chase prey. The WOA algorithm makes the assumption that
the current best candidate solution X∗ is the target prey or is very close to the optimum
because the location of the optimal design in the search space is not previously known.

The position of the prey is therefore determined by the best whale
−→
X∗ that has been

discovered up to that iteration t. Such a mechanism is described by the ensuing equations:

−→
X (t+ 1) =

−→
X∗(t)−

−→
A.
−→
D, (3.1)
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−→
D =

∣∣∣−→C .−→X∗(t)−−→X (t)
∣∣∣ , (3.2)

where
−→
D is the computed modified distance between the whale

−→
X (t) and the prey;

−→
A

and
−→
C are coefficient vectors constructed mathematically using the following equations:

−→
A = 2a−→r − a (3.3)

−→
C = 2−→r (3.4)

Throughout the length of the iterations, a is reduced linearly from 2 to 0. In equations
(3.3) and (3.4), −→r is an n-dimensional random vector.

3.2 The bubble-net foraging (Exploitation)

Humpback whale foraging generates individual bubbles in a circle, leading to what’s known
as bubble-net foraging, and two approaches are proposed to:

3.2.1 Shrinking encircling procedure

This effect is achieved by reducing the value of a in Equation (3.3) from 2 to 0 throughout
the number of iterations. As a result, A is a random value in the range [−a, a]. The new
position of a search whale may be placed anywhere between the starting location of the
whale and the position of the current best whale by setting random values for A in [−1, 1].

3.2.2 Spiral motion updating

To emulate the helix-shaped movement of humpback whales, a spiral equation is built
between the positions of whale and prey (best solution produced so far), in which l is
a random number in the range [−1, 1] and the logarithmic spiral form is defined by the
constant b. −→

X (t+ 1) =
−→
D′ exp(bl) cos(2πl) +

−→
X∗(t) (3.5)

−→
D′ = |

−→
X∗(t)−

−→
X (t)| (3.6)

It should be noted that humpback whales swim around their prey in a shrinking circle and
along a spiral-shaped path at the same time, assuming a 50% chance of selecting either
the shrinking encircling procedure or the spiral motion to update their position. As a
result, the mathematical model of this behavior is as follows:

−→
X (t+ 1) =

Shrinking encircling (Equation (3.3)) if p < 0.5

Spiral motion (Equation (3.5)) if p ≥ 0.5
(3.7)

where p is a random value between [0, 1].
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3.3 Searching for prey (Exploration)

Along with the bubble-net technique, humpback whales hunt for prey at random. Unlike
the exploitation phase, we update a search agent’s position in the exploration phase based

on a randomly picked search agent
−−−→
Xrand rather than the best search agent found so far.

When |A| > 1, a random search agent is chosen to update the position of the search
agents, and the optimal solution is chosen when |A| < 1. Following is a description of the
mathematical model:

−→
X (t+ 1) =

−−−→
Xrand −

−→
A ·
−→
D, (3.8)

−→
D = |

−→
C ·
−−−→
Xrand −

−→
X (t)|. (3.9)

4 Lobw for Minimum Dominating Set Problem

In this section, we discuss how we intend to deal with the MDS problem. Our technique
takes as input a problem instance G = (V,E), where V and E represent its set of vertices
and set of edges, respectively. An initial population P of N search agents (solutions) is
used in the Lobw method. As a result, the size of the vector representing whale in P is
equal to the number of nodes in the graph G = (V,E). The i− th node in G is a member
of the dominant set if the i − th element of the vector has a value of 1. Algorithm 1
describes the proposed approach.

4.1 Local Search Technique

When whales use a spiraling or shrinking motion to pursue their prey in a real-world
setting, the prey continues to move. As a result, the prey would have relocated by the
time the whales arrived at its location. In order to find their prey precisely, whales must
therefore seek it out in the neighborhood. A local search technique has been used to
simulate the local searching behavior of the whales in order to execute this scenario in the
whale system, drawing inspiration from [25]. Two whales are chosen at random (−→xr1,−→xr2),
and two other whales are created using:

−→
w1

i (t+ 1) = −→wi(t) + (−→xr1 −−→xr2),
−→
w2

i (t+ 1) = −→wi(t)− (−→xr1 −−→xr2),
(4.1)

where
−→
w1

i (t + 1) and
−→
w2

i (t + 1) are the two neighbors of solution −→wi(t). These two new
whales are compared to the original whale −→wi(t), and if either has a better fitness value,
the freshly created whale with the best fitness replaces the original in the population.
Algorithm 2 provides the pseudocode for this local search method.
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Algorithm 1 Lobw algorithm

Require: A graph G = (V,E); Local Search procedure
Ensure: Fittest whale in the population (MDS)
1: Itern⇐ maximum number of iterations
2: N ⇐ number of whales
3: t⇐ 0
4: Generate a population of N whales Xi, i = 1, 2, 3, . . . , N
5: Compute the fitness function fi of each whale Xwi using Equation (1.1)
6: Sort the whales in decreasing fitness order
7: Choose the most fit whale X∗ to be the prey
8: while t ≤ itern do
9: Reduce the value of a from 2 to 0
10: for i← 1 to N do
11: Compute A and C using Equation (3.3) and (3.4) resp.
12: p = random(0, 1)
13: if p < 0.5 then
14: if A ≥ 1 then
15: // Exploration through shrinking encircling //
16: Pick a whale at random from the population
17: Update position based on Equation (3.8)
18: else
19: // Exploitation through shrinking encircling //
20: Update position based on Equation (3.1)

21: else
22: // Spiral motion //
23: Update position based on Equation (3.5)

24: if wi doesn’t change then
25: Choose two whales candidate1 and candidate2 at random from the
26: population N other than whale wi

27: Perform the Local Search on whale wi

28: else
29: Continue
30: Rank whales from best to worst and find the fittest one
31: Update the global optimal solution X∗

32: return X∗
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Algorithm 2 Local Search

Require: Two random whales −→xr1 and −→xr2 and current solution −→wi

Ensure: Fittest whale
1: Generate two neighbors candidate solutions candidate1 and candidate2 using Equation

(4.1)
2: f1 = fitness(candidate1)
3: f2 = fitness(candidate2)
4: Sort the two generated whales and take the fittest one as candidate and its fitness f
5: if f < fitness(wi) then −→wi = candidate
6: else
7: return −→wi

8: return −→wi

5 Experiment and results

The experimental results of the improved binary whale optimization approach (Lobw)
are presented in this section. The first subsection lists the experimental datasets. The
second subsection then provides an explanation of the performance measurements. The
impact of the local search on the proposed Lobw is discussed in the following subsection.
The comparisons with relevant studies are included in this section’s last subsection. Each
graph from the two literature benchmarks was run ten times. Our Lobw algorithm was
implemented using Python. Also, all testing was done on a machine with 16 gigabytes of
RAM and a 2.6 GHz Intel Core i5 CPU.

5.1 Datasets Description

The performance of Lobw is evaluated using two benchmark datasets. This section
provides a brief description of various datasets.

5.1.1 Random Geometric Graphs

Previously presented in [22] are 42 arbitrary geometric networks with up to 400 nodes.
For the purpose of building the networks, the authors utilized the generating instructions
from [19] and [26]. Every network is made by randomly placing n nodes (see column No.
of nodes in Table 1) in an M ×M area according to a uniform distribution (see column
Area in Table 1). Based on the range parameter shown in column Range in Table 1,
a number of graph instances were created for each network. They made sure that the
graph constituted a connected graph by adhering to the directions in [26]. In addition,
the column Nb of instances is the number of graph instances per network.



Minimum Dominating Set using an Enhanced Binary Whale Algorithm 9

Table 1: Random Geometric Graphs

Network id Nb of nodes (n) Range Area (A) Nb of instances

N1n
A 400 210-240 3000×3000 4

N2n
A 350 200-230 2500×2500 4

N3n
A 300 180-220 2000×2000 5

N4n
A 250 130-160 1500×1500 4

N5n
A 200 100-160 1000×1000 7

N6n
A 200 70-120 700×700 6

N7n
A 100 80-120 600×600 5

N8n
A 80 60-120 400×400 7

5.1.2 Known dominating set

Graphs from [22] consisting of 21 graphs with 400 and 800 vertices each. The minimum
dominating set in this benchmark set is determined. The method described in [19] was
used by the authors to create networks with known dominance numbers and given densities
denoted Gn

d,p, where n is the number of nodes, d is the dominance number, and p is
the probability for edge generation. The detailed technique is Initially described in [17].
Two types of graphs with 400 and 800 vertices, various densities (0.1, 0.3, and 0.5), were
employed in this benchmark (see Table 2).

Table 2: Known dominance number benchmark

Network Id Nb of nodes (n) p d Nb of instances

G400
d,0.1 400 0.1 8, 11, 14, 18, 23 5

G400
d,0.3 400 0.3 3, 5, 8, 11, 14 5

G400
d,0.5 400 0.5 3, 5, 8, 11 4

G800
d,0.1 800 0.1 11, 14, 22 3

G800
d,0.3 800 0.3 3, 5 2

G800
d,0.5 800 0.5 3, 6 2

5.2 Performance Metrics

The Lobw algorithm is examined using four different measures. The worst, best, mean
fitness value, and standard deviation are the metrics. They are defined mathematically as
follows:
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Best = min{fitnessi, i = 1, . . . , 10},

Worst = max{fitnessi, i = 1, . . . , 10},

Mean =
1

10

10∑
i=1

fitnessi,

Standard deviation =

√∑10
i=1 |fitnessi−mean|2

10
,

Hits = count(best) for 10 runs.

Here, 10 refers to the number of runs conducted and count(best) is a variable used to keep
track of the number of times the best solution appeared among the 10 runs.

5.3 Effect of the Local Search

To showcase how the local search of the proposed algorithm can affect its performance, we
conducted a test using the suggested method named Lobw, and a version without local
search named Bwoa. Both versions were compared based on the results obtained from
using the same initial population of 100 randomly generated whales, while employing the
truly random function for the WOA. The outcomes of ten separate runs for each instance
are presented in tables N1 to N8.

Lobw created smaller dominant sets for 7 graph examples (see 0 in the hits column of
Bwoa); all of these improvements were obtained for networks with at least 300 nodes,
with the majority of them for network N1. For 35 instances, both versions found best
solutions of equal quality. Lobw provided a significantly higher number of hits for 34
of the 35 graph cases. So far, Bwoa has produced more hits than Lobw on only one
instance (N2350

2500 in range 200). The Tables 3, 4, 5, 6, 7, 8, 9, and 10 were simulated and
visually presented in Figure 2 to illustrate the difference in best solution hits between
the Bwoa and Lobw versions. According to this figure, Lobw could outperform Bwoa
in terms of reaching the best solution. Lobw showed enhanced solution qualities that
were statistically verified throughout all ten runs (see the average column avg.). The local
search approach, which enables the whales to improve their exploitation by conducting
searches around the most advantageous areas where they are located, is what can be used
to explain why Lobw is superior to Bwoa.
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Table 3: The effect of the local search in the Lobw algorithm on N1400
3000

Instance Bwoa Lobw

Network Range Best Avg Std Hits Best Avg Std Hits

210 69 69.9 1.20 0 67 67.4 0.52 6
N1400

3000 220 64 65.8 1.14 0 62 64.1 1.37 1
230 61 62.4 1.07 0 57 59.5 1.27 1
240 55 56.1 1.45 0 54 55.2 0.63 1

Table 4: The effect of the local search in the Lobw algorithm on N2350
2500

Instance Bwoa Lobw

Network Range Best Avg Std Hits Best Avg Std Hits

200 54 55.1 1 3 54 54.9 0.32 1
N2350

2500 210 48 50.6 1.71 0 47 48.5 0.71 1
220 43 44.7 0.95 1 43 44.2 0.63 1
230 42 43.2 0.63 1 42 42.7 0.48 3

Table 5: The effect of the local search in the Lobw algorithm on N3300
2000

Instance Bwoa Lobw

Network Range Best Avg Std Hits Best Avg Std Hits

180 43 43.8 0.63 0 42 43.1 0.74 2
190 39 40.8 1.03 1 39 39.9 0.57 2

N3300
2000 200 36 36.7 0.82 0 35 35.6 0.70 5

210 34 34.7 0.67 4 34 34.2 0.42 8
220 31 32.2 0.63 1 31 31,5 0.53 5

Table 6: The effect of the local search in the Lobw algorithm on N4250
1500

Instance Bwoa Lobw

Network Range Best Avg Std Hits Best Avg Std Hits

130 47 47.1 0.32 9 47 47 0 10
N4250

1500 140 40 41.4 0.70 1 40 40.2 0.42 8
150 37 37.9 0.57 2 37 37.3 0.48 7
160 33 34.1 0.74 2 33 33.9 0.32 1
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Table 7: The effect of the local search in the Lobw algorithm on N5200
1000

Instance Bwoa Lobw

Network Range Best Avg Std Hits Best Avg Std Hits

100 35 36.4 0.84 1 35 35.1 0.32 9
110 30 31.6 0.84 1 30 30.6 0.70 5
120 23 23.9 0.57 2 23 23.7 0.67 4

N52001000 130 23 23.9 0.32 1 23 23.4 0.52 6
140 20 21.1 0.57 1 20 20.8 0.42 2
150 17 17.7 0.48 3 17 17.4 0.52 6
160 17 17 0 10 17 17 0 10

Table 8: The effect of the local search in the Lobw algorithm on N6200
700

Instance Bwoa Lobw

Network Range Best Avg Std Hits Best Avg Std Hits

70 32 32 0 10 32 32 0 10
80 26 26.6 0.70 5 26 26.3 0.48 7

N6200700 90 22 23.2 0.63 1 22 22.7 0.48 3
100 18 19.1 0.74 2 18 18.4 0.52 6
110 16 16.9 0.74 3 16 16 0 10
120 14 14.1 0.32 9 14 14 0 10

Table 9: The effect of the local search in the Lobw algorithm on N7100
600

Instance Bwoa Lobw

Network Range Best Avg Std Hits Best Avg Std Hits

80 18 18.2 0.42 8 18 18 0 10
90 15 15 0 10 15 15 0 10

N7100600 10 13 13.3 0.48 7 13 13 0 10
110 11 11 0 10 11 11 0 10
120 9 9.1 0.32 9 9 9 0 10

Table 10: The effect of the local search in the Lobw algorithm on N880
400

Instance Bwoa Lobw

Network Range Best Avg Std Hits Best Avg Std Hits

60 15 15 0 10 15 15 0 10
70 12 12.9 0.32 1 12 12.2 0.42 8
80 9 9.2 0.42 8 9 9 0 10

N880400 90 8 8 0 10 8 8 0 10
100 7 7.5 0.53 5 7 7.3 0.48 7
110 6 6 0 10 6 6 0 10
120 5 5.4 0.52 6 5 5.3 0.48 7
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Figure 2: Hits analysis on various graphs for Lobw and Bwoa.
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5.4 Numerical results to the relevant works

In this section the results of Lobw are evaluated with the state-of-the-art algorithms in
the literature. The datasets used in this comparison were taken from [22]. Many works
have constructed random geometric graphs 5.1.1 based on Bettstetter’s work [26]. The
comparison with these works, however, will be inaccurate because the data may have
slight alterations due to the random distribution procedure used to generate it. To fix this
problem, all of the methods in the comparison used the same dataset. The Hga [21] and
Samds [22] values were obtained from [22]. However, this does not affect the comparison
because their stopping criterion was 100 iterations each run for 20 runs, whereas Lobw
evaluated using 100 iterations per run for the 10 runs.

In Table 11, the data are statistically reported. Each graph’s statistics are shown in
the form of min., avg., std., and worst., which indicate the minimum, average, standard
deviation, and worst values, respectively.

Lobw outperforms all state-of-the-art solutions in terms of offering the best solution.
Additionally, Lobw can improve on the best-known solution in 32 of 42 graph instances
and match the best-known solution in the remaining ten. In larger graphs, the differences
between Lobw and the other algorithms become more pronounced. For example, in
instances with 300, 350, and 400 vertices, Lobw produced much better solutions in all
graph instances. In contrast, for large graphs, Samds generated the most effective minimum
dominating sets, while Hga performed better for relatively smaller graphs. However,
Samds outperformed Hga in terms of convergence rate, enabling faster identification of
the best solution. Based on these results, we will consider only Samds for the comparison
with Lobw. Notice that each table row in the comparison highlights the best output of
the top-performing algorithm in bold type.

For the second benchmark set, see Table 12, where the performance of Lobw is compared
to that of Samds, the best-known method in this dataset. The benchmark graph instances
and data are drawn from the same paper [22]. Lobw and Samds results are given for
each graph in terms of the average solution of the best solution found in 10 runs (column
Average) and the reaching times of the best solution found over 10 runs (column Optimal
Reached).

Both algorithms are able to find the dominating set, so the comparison will be based on
how many times each algorithm finds the optimal solution in 10 runs. Furthermore, Lobw
is able to find the optimal solution in 10 runs for all graph instances in this benchmark
set. Samds can only prove optimality 10 times in 11 out of 21 cases (3 graphs with 800
vertices and 7 graphs with 400 vertices) and can match the results of Lobw in only 11
further cases.

In terms of statistical differences between the methods investigated, only the first benchmark
set of random goemetric graphs makes sense, as the second benchmark set results of
Samds and Lobw are too evident. Proceed to the statistical section to see if there are
any statistical differences between subsets of instances from Table 1.
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5.5 Statistical Analysis

To identify statistical differences (if any) pertaining to Lobw and Samds from Table
11 and Bwoa from Tables 3, 4, 5, 6, 7, 8, 9, 10. We rate algorithms using Critical
Difference (CD) diagrams, first presented in [27]. The package used can be downloaded
from bit.ly/3KYCDoF. They are a useful resource for assessing different algorithms.
Using the non-parametric Friedman test in the first stage, which examines the algorithms
separately for each data set to establish the average ranks of algorithms and determines
whether there are any notable differences, before drawing any diagrams. In the second
stage, we undertake a post-hoc study after the Friedman test rejects the null hypothesis
that every algorithm performs identically. Where each pair of algorithms is compared
using a Wilcoxon signed-rank test to see if there is a significant difference [28]. As we are
comparing many hypotheses, we must modify the Wilcoxon’s test using Holm’s method.
On the horizontal axis of these diagram plots, each algorithm under consideration is ranked.
The algorithm with the best performance is given a rank that is close to 1, followed by
the second with a rank that is higher, and so on. Strong horizontal bars link the related
algorithms, which we cannot distinguish from the Holm-adjusted Wilcoxon’s test, which is
viewed as statistically equal.

In terms of the best solution, the mean rankings of the critical difference plots in Figure
3a demonstrate that Lobw outperforms the other algorithms statistically. The statistical
closeness of Bwoa’s performance to our technique while being ranked second confirms
the efficacy of the WOA algorithm in solving the minimum dominating set problem. The
Samds algorithm ultimately proves to be the weakest in the investigation; even the poorest
solutions found by Lobw in 10 runs yield superior outcomes to the Samds algorithm’s
best.

Figure 3b displays the critical difference diagram of Lobw, Bwoa, and Samds in terms
of the average solution of the best solution found in 10 runs. Lobw clearly outperforms
Samds and Bwoa, which is obvious and demonstrates the effectiveness of the local search
in improving the exploitation process. As a result, we can say that, in terms of stability,
Lobw performs better than cutting-edge methods. Additionally, Figure 3c, which displays
a comparison diagram of the standard deviations obtained using the three approaches,
supports the stability of the Lobw algorithm. We can see this in Table 11, where the
Lobw std. column produced 10 zeros out of 42 cases, and the remaining cases are too
close to zero. Yet, Bwoa performs better than Samds when standard deviation values are
high, which demonstrates that Samds has a propensity to converge to a local optimum.
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Table 11: A comparison of the performance of various algorithms on the first benchmark
sets

Instance Best Mean Std. Worst

Network Range Samds Lobw Samds Lobw Samds Lobw Lobw

210 75 67 80.15 67.4 3.10 0.52 68
N14003000 220 73 62 79.25 64.1 3.18 1.37 66

230 71 57 74.10 59.5 2.22 1.27 61
240 63 54 68.80 55.2 2.98 0.63 56

200 61 54 66.35 54.9 2.13 0.32 55
N23502500 210 58 47 61.85 48.5 2.18 0.71 49

220 49 43 55.05 44.2 2.31 0.63 45
230 48 42 54.05 42.7 2.42 0.48 43

180 47 42 52.35 43.1 2.41 0.74 44
190 46 39 50.20 39.9 2.24 0.57 41

N33002000 200 40 35 45.25 35.6 2.55 0.7 37
210 39 34 43.60 34.2 1.70 0.42 35
220 36 31 40.65 31.5 1.90 0.53 32

130 51 47 56.05 47 2.68 0 47
N42501500 140 46 40 48.65 40.2 1.35 0.42 41

150 41 37 44.75 37.3 1.71 0.48 38
160 37 33 40.90 33.9 1.92 0.32 34

100 38 35 41.35 35.1 1.87 0.32 36
110 33 30 37.20 30.6 2.44 0.7 32
120 26 23 30.10 23.7 1.45 0.67 25

N52001000 130 25 23 28.15 23.4 1.42 0.52 24
140 22 20 25.70 20.8 1.84 0.42 21
150 20 17 23.55 17.4 1.43 0.52 18
160 19 17 21.30 17 1.30 0 17

70 35 32 39.95 32 2.09 0 32
80 29 26 33.50 26.3 1.73 0.48 27

N6200700 90 25 22 29.25 22.7 1.94 0.48 23
100 20 18 24.20 18.4 1.70 0.52 19
110 18 16 21.40 16 1.93 0 16
120 15 14 19.55 14 1.43 0 14

80 18 18 20.55 18 1.23 0 18
90 15 15 17.65 15 1.73 0 15

N7100600 10 13 13 14.95 13 1.05 0 13
110 11 11 12.85 11 1.23 0 11
120 9 9 12 9 1.49 0 9

60 15 15 16.35 15 0.67 0 15
70 12 12 14.40 12.2 1.14 0.42 13
80 10 9 12 9 1.03 0 9

N880400 90 8 8 9.60 8 1.27 0 8
100 7 7 9.10 7.3 0.97 0.48 8
110 6 6 7.55 6 0.69 0 6
120 5 5 7 5.3 1.08 0.48 6
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Table 12: Numerical results of Lobw and Samds on the second benchmark sets

Averge Optimal Reached

Network Optimal Samds Lobw Samds Lobw

8 8 8 10 10
11 11.1 11 9 10

N400
0.1,d 14 14.2 14 9 10

18 18 18 10 10
23 23 23 10 10

3 3.8 3 8 10
5 5.2 5 8 10

N400
0.3,d 8 9 8 8 10

11 11 11 10 10
14 14 14 10 10

3 3.1 3 9 10
N400

0.5,d 5 5.3 5 9 10
8 8 8 10 10
11 11 11 10 10

11 11.3 11 7 10
N800

0.1,d 14 14 14 10 10
22 22 22 10 10

N800
0.3,d 3 7.3 3 6 10

5 5 5 10 10

N800
0.5,d 3 3.4 3 8 10

6 6 6 10 10
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1 2 3 4
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Bwoa

Critical Difference Diagrams

Samds
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(a) Best solutions ranking of Bwoa, Samds and
Lobw (with worst solution)

1 2 3

(c) Standard deviation (Std)

Lobw Samds
Bwoa

Critical Difference Diagrams

1 2 3

Lobw
Samds

Bwoa

(b) Average ranking

Critical Difference Diagrams

Figure 3: Best solutions ranking of Bwoa, Samds, and Lobw.

6 Conclusion

Currently, it’s fairly usual to solve optimization problems by simulating the cognitive
behavior of animals and insects. The most thoroughly examined metaheuristic algorithm
in the field of swarm intelligence, a new, straightforward, and reliable optimization strategy,
is the Whale Optimization Algorithm, which is based on the social hunting behavior of
humpback whales. In the current work, an improved whale optimization technique known
as Lobw has been designed for tackling the minimum dominating set, one of the key graph
theory problems. The suggested algorithm’s exploration and exploitation capabilities are
balanced by the employment of a local search mechanism by Lobw, which also aids WOA
in preventing premature convergence. Additionally, the suggested method was tested
using two benchmark datasets from the literature. As well, our results show that the
proposed Lobw method is a reliable and efficient way to solve the problem of the minimum
dominating set when compared to other state-of-the-art approaches. In this study, we
examine our suggested algorithm using two benchmark test datasets. We will look into
how well Lobw performs in practical applications. The whale optimization approach will
also be extended for use with other combinatorial optimization issues as part of our other
future work paths.
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