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Abstract : Proteins are biological molecules that perform various functions
in the cells of our body. Each protein has a specific amino acid sequence and
structure, known as the native structure, which determines its biological func-
tion. Any changes in this structure can lead to a loss of function and can
cause dangerous diseases such as Alzheimer’s and Parkinson’s disease. There-
fore, predicting the tertiary structure of proteins is one of the most challenging
topics in molecular biology and biophysics. With the numerous optimization
methods developed in operations research, the problem of Protein Structure
Prediction (PSP) based on the real folding process is being addressed with dif-
ferent optimization methods. In this paper, we present a discrete hybrid power
pollination algorithm called HFPA for solving the PSP problem in a 2D trian-
gular lattice based on the simplified hydrophobic-polar model. The proposed
algorithm combines the Flower Pollination Algorithm (FPA), Tabu Search
(TS), and Hybrid Genetic Algorithm (HGA).We implemented the HFPA al-
gorithm and used it to solve a set of benchmark instances. We also compared
its performance against state-of-the-art algorithms.

Keywords: Protein Structure Prediction; Flower Pollination Algorithm;
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1 Introduction

Predicting the original structure of proteins from their amino acid sequences is one of the
most difficult and challenging problems confronted by scientists in many areas, including
biology, chemistry, and even mathematics [21, 8, 9, 10, 49]. The main drivers of this high
degree of interest are the biological roles of proteins in living cells. A protein’s native
structure, which consists of a specific number and order of amino acids, determines its
biological functions (i.e., the primary structure) [68]. Protein misfolding has also been
linked to several serious diseases, including Alzheimer’s, Parkinson’s, and mad cow dis-
ease [35, 32, 33, 15]. As a result, developing an effective prediction approach based on the
natural protein folding mechanism could help in the detection and treatment of a wide
range of diseases. Currently, protein structure is determined using X-ray crystallography
[13] and Nuclear Magnetic Resonance (NMR) [1]. However, these procedures take a long
time and require a lot of equipment. As a result, computational approaches based on
simplified models have been widely used to address the PSP problem. One of the most
widely used models for simulating protein folding based on amino acid sequences is the
Hydrophobic-Polar (HP) model, which is implemented on different lattices, including 2D
square, 3D cubic, 2D triangular, and Face-Centered Cubic (FCC) (2D or 3D) lattices
[9, 24, 50, 17].

This model not only simplifies and reduces the complexity of the Protein Folding Problem
(PFP), but it is also based on the actual process of protein folding, where hydrophobic
interactions between amino acids are the most important force that guides proteins to
fold into their native state [2, 3]. Despite reducing the complexity of the protein folding
problem, predicting the optimal protein structure under the HP model is still an NP-
hard optimization problem [18, 19]. Predicting the native structure of proteins in the HP
model using different metaheuristics has been widely investigated by scientists over the
last 50 years. In the present work, we are interested in solving the PSP problem in the
2D triangular HP lattice model. In this model, Hoque et al. proposed a Hybrid Genetic
Algorithm (HGA) to solve the PSP problem [20]. After the crossover and mutation oper-
ations, HGA employs an efficient strategy to change the conformations without causing
any collisions. The experimental results showed that the HGA algorithm performs sig-
nificantly better than the Standard Genetic Algorithm (SGA). Then, in [21], Su et al.
suggested an effective hybrid algorithm (HHGA) based on a new elite-based reproduction
strategy. HHGA combines the Genetic Algorithm (GA) and Hill-Climbing Algorithm at
the level of crossover and mutation operations. According to the obtained results on a
set of data benchmarks, the authors demonstrate that the proposed HHGA algorithm
outperforms both SGA and HGA algorithms. Yang et al. proposed a new hybrid method
called IMOG in [53], the proposed IMOG algorithm combines the Ion Motion Optimiza-
tion (IMO) algorithm with the greedy algorithm. The statistical results based on the best
and mean energy indicate that IMOG outperforms HGGA, HGA, and SGA and achieves
high-quality results for the majority of tested instances. To solve the PSP problem, Guo
et al. proposed an Extended version of the Particle Swarm Optimization algorithm called
EPSO [13]. Experimental results showed that EPSO achieved better conformation quality
than SGA and produced comparable results to HHGA.
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However, in terms of execution time, EPSO outperformed HHGA. Recently, Boumedine
et al. proposed a new hybrid genetic algorithm (GATSLS) that incorporates a novel re-
production scheme, where the crossover operation is guided by the tabu search strategy.
They further improve the quality of the solutions using the local search algorithm [38].
Based on the experimental results, the authors demonstrated that the proposed GATSLS
algorithm can easily obtain the best-known solution for short protein instances and a
near-optimal solution for long protein instances. Additionally, the authors showed that
the GATSLS algorithm can quickly obtain the best-known solution for short protein in-
stances and near-optimal solutions for long and complex protein instances.

Furthermore, the GATSLS algorithm outperforms all current state-of-the-art algorithms.
Recently, Yang et al. introduced the Flower Pollination Algorithm (FPA) [54], which is
based on the real pollination process of flowering plants. Since its introduction in 2012,
this algorithm has been widely employed to solve many challenging optimization prob-
lems. Due to its high ability to explore the search space, the FPA algorithm has been
successful in solving many continuous optimization problems more efficiently than other
popular nature-based algorithms, such as genetic algorithms and particle swarm optimiza-
tion [23]. The efficiency and interesting results achieved by FPA have motivated us to
apply it to the PSP problem, which represents a discrete optimization problem. In this
paper, we introduce a discrete hybrid ower pollination algorithm labeled HFPA to solve
the PSP problem in a 2D triangular lattice.

The remainder of this paper is structured as follows: In Section 2, we offer the HP model
and the 2D triangular lattice used to conduct this study. Then, in Section 3, we present
the different basic concepts of the Flower Pollination Algorithm (FPA). Section 4 provides
a brief description of the proposed Hybrid Flower Pollination Algorithm (HFPA) and the
motivation behind this hybridization. In Section 5, we report and discuss the results
obtained by the proposed algorithm on two sets of benchmark instances. Finally, in the
last section, we offer some interesting conclusions and perspectives for future work.

2 Protein folding in lattices under the HP model

The hydrophobic amino acids form the core of the native conformation during the folding
of proteins, through interactions between them that reduce the free energy of the structure
to its lowest possible level [7, 22]. This leads to the stability of the structure in its
active conformation. Based on this theory, Dill et al. proposed a simplified model of
hydrophobic-polar folding called the HP model [24]. The 20 amino acids that make up the
primary structure of proteins are divided into two groups in this model: H (hydrophobic)
and P (polar). The energy value of the conformation is determined by the number of
contacts between hydrophobic amino acids (H-H contacts) that are not neighbors in the
protein sequence and are located in two adjacent positions on the grid. The optimal
conformation is the one with the lowest energy value, which corresponds to the maximum
number of H-H contacts [3]. Figure 1 shows the optimal conformation for a protein
sequence of 20 amino acids, with the corresponding sequence in the HP model being
HPHPPHHPHPPHPHHPPHPH. This conformation has 15 topological contacts between
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hydrophobic amino acids, resulting in a free energy of E = −15. In lattice models,
protein conformations are represented by a sequence of lattice movements that do not
pass through the same position twice [38].

Hydrophobic amino acid (H)

Polar amino acid (P)

H-H contact

Figure 1: An optimal conformation refers to the most favorable shape of a protein sequence
containing 20 amino acids on a 2D triangular lattice.

2.1 The determination of free energy

In HP lattice models, the quality of a given protein conformation is evaluated based on
the number of H-H contacts. For a protein sequence p = p1p2 . . . pn of n amino acids,
let C(p) be the set of all feasible conformations for p. The free energy E(C(p)) can be
determined using the following mathematical formula [26]:

E(C(p)) = −
n−1∑
i=1

n∑
i=i+1

θi,jri,j,

where

θi,j =

 1, if the ith and jth amino acids are hydrophobic, i.e., pi = pj = H,

0, else,

and

ri,j =

 1, if pi and pj are adjacent in the grid but not consecutive in the sequence P ,
0, else.

The main challenge in protein structure prediction using HP lattice models is to identify
the conformation c∗ that minimizes the free energy [29]:

E(c∗) = min{E(c) | c ∈ C(p)}.
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3 Flower Pollination Algorithm (FPA)

Recently, in 2012, Yang et al. developed the Flower Pollination Algorithm (FPA) [54], a
metaheuristic inspired by the behavior of a variety of owers during their pollination for
reproduction [55]. The flower pollination process can be characterized by the following
rules:

1. Biotic pollination: can be considered a form of global pollination that relies on pol-
linators like birds, insects, and bees to carry out long-distance or cross-pollination.

2. Abiotic pollination: refers to self-pollination or local pollination that occurs within
a flower and does not require external pollinators.

3. Constancy in pollination: refers to the tendency of pollinators to visit flowers of
the same species due to their similarity. The likelihood of successful reproduction
is correlated with the probability of pollinators providing consistent pollen transfer
between flowers.

4. The Switch Probability, denoted as p and ranging from 0 to 1: is used to achieve a
balanced approach between local and global pollination.

To develop the FPA algorithm, Yang et al. mathematically represented each pollination
rule:

3.1 Global pollination

Global pollination is a search strategy that aims to explore new regions of the search
space. It is defined by the following mathematical formula [34]:

xt+1
i = xti + αL(λ)(x∗ − xti), (1)

where
L(λ) = λΓ(λ) sin(λ)

π
· 1
s1+λ s� s0 � 0,

and xti represents the ith pollen at the current iteration t (i.e., the current solution),
and x∗ represents the best solution identified in all previous generations (i.e., the current
best solution). The parameter α is a scaling factor that controls the step size. L(λ)
represents the Lévy flight step size, which is one of the most important and in influential
search mechanisms in the FPA algorithm. The Lévy flight step size is determined by the
standard gamma distribution Γ.
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3.2 Local pollination

Local pollination is a search method that focuses on finding the local optimum within
a specific region of the search space. Within the FPA algorithm, this is accomplished
through the use of the following mathematical formula, as stated by Yang [54]:

xt+1
i = xti + ε(xtj − xtk). (2)

Here, xti represents the pollen of iteration t for the ith solution. The values xtj and xtk
correspond to two different solutions randomly selected from the current generation t,
while ε is a random number generated from a uniform distribution over the interval [0 1].
The pseudo-code for the CSA algorithm is presented in Algorithm 1.

Algorithm 1 Flower Pollination Algorithm: FPA
Require: Problem instance I.
Ensure: The best-found solution for I.

Begin
Objective Function f(x);
Generate initial population F of m flowers in random way, x1, . . . , xm;
x∗ : The best solution in the initial population F ;
Set the probability of the switch p;
t = 0;
while t ≤ Max (maximum number of iterations) do

for each flower xti, i = 1, . . . ,m do
if rand < p then

Define a step vector L that according to a Lévy distribution.
Perform a global pollination to generate a new solution xt+1

i via Equation 1.
else

Generate ε from the uniform distribution.
Randomly select two solutions from the current population.
Perform a local pollination to generate a new solution xt+1

i via Equation 2.
end if
if f(xt+1

i ) < f(xti) then
xti = xt+1

i ;
end if

end For
Update the current optimal solution x∗;
t = t+ 1;

end while
End
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3.3 Application of FPA

Since the initial publication of the FPA algorithm, it has been successfully applied to
solve numerous challenging real-world optimization problems in various domains, includ-
ing electrical engineering problems such as PV model parameter estimation [52, 37], eco-
nomic load dispatch [36,37], reactive power dispatch [41, 25], and optimal power flow
[46, 45]. The algorithm has also been applied in wireless and network domains, such as
wireless sensor network optimization [44, 14], antenna array optimization [42, 43], and
multiplexing of optical divisions [18]. In the clustering domain, FPA has been used for
data clustering [19, 36] and neural network feedforward training [5]. In signal and image
processing, the algorithm has been applied to tasks such as medical image segmentation
[51], localization of retinal vessels, and shape matching. Furthermore, the FPA algorithm
has been utilized in mechanical engineering problems, such as designs of mechanical and
structural engineering [30, 28, 31], as well as for several global optimization problems [27].

4 Hybrid Flower Pollination Algorithm (FPA)

Most optimization problems have multiple local optima, and the efficiency of the opti-
mization method used has a substantial impact on finding the global optimal solution. To
effectively solve a given optimization problem, the metaheuristic employed should strike
a balance between global and local search. In light of this, numerous hybrid metaheuris-
tics integrating multiple approaches have been developed to address various optimization
problems.

In this work, we present an efficient hybrid algorithm, called the Hybrid Flower Pollination
Algorithm (HFPA), which combines the Genetic Algorithm (GA) with the standard FPA
algorithm. The main goal of this integration is to create a more powerful optimization
method that leverages the advantages of various pure techniques. Our proposed method
involves two search phases, each consisting of global and local search. We control the bal-
ance between the two search phases using the switching probability of the FPA algorithm.
For the first search phase, we use an adaptive Lévy distribution for global search and the
Tabu Search (TS) algorithm to improve the quality of the solutions obtained. We also
propose an adaptive Lévy distribution for discrete optimization problems like the Per-
mutation Flow Shop Problem (PSP). For the second search phase, we use the mutation
operator of the GA algorithm for diversification and the crossover operation to generate
high-quality solutions. The pseudo-code for the proposed HFPA algorithm is presented
in Algorithm 2 and is described in detail below.
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Algorithm 2 Hybrid Flower Pollination Algorithm: HFPA
Require: Problem instance I.
Ensure: The best-found solution for I.

Begin
Objective Function f(x);
Generate initial population F of m flowers in random way, x1, . . . , xm;
x∗ : The best solution in the initial population F ;
Set the probability of the switch p;
t = 0;
while t ≤ Max (maximum number of iterations) do

for each flower xti, i = 1, . . . ,m do
if rand < p then

First step;
Perform a global pollination: generate a new solution xt+1

i via Lévy
distribution.
Perform a local pollination: improve xt+1

i using the tabu search algorithm;
else

Second step;
Perform a global pollination: generate a new solution xtj by applying the
mutation operator to xti.
Select a random solution xtk from the current population.
Perform a local pollination: generate a new solution xt+1

i by applying the
crossover operator to xtj and xtk;

end if
if f(xt+1

i ) < f(xti) then
xti = xt+1

i ;
end if

end For
Update the current optimal solution x∗;
t = t+ 1;

end while
End

4.1 Initialization

Each node of the 2D triangular lattice has six neighbors, which we assign a folding di-
rection to, denoted by a number i where i, i ∈ {1, 2, 3, 4, 5, 6}. Specifically, we assign the
direction of ”right” as (1), ”right up” as (2), ”left up” as (3), ”left” as (4), ”left down” as
(5), and ”right down” as (6) (see Figure 2). For each amino acid, we assign the folding
direction that corresponds to its position in the lattice [38]. The solution (b) in Figure 2)
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can be represented by its direction vector movement v as follows:

v = (3, 5, 4, 6, 1, 1, 5, 1, 5, 6, 2, 1, 3, 1, 2, 4, 5).

H-H contact

p1 p20

4 35

6
1 1

5
15

1
6 2

3

3
1

2

435

(b)

Right (1)

Right up (2)Left up (3)

Left (4)

Left down (5) Right down (6)

(a)

Figure 2: (a): Encoding of neighboring triangular lattice nodes. (b): Encoding of a
feasible solution for a protein sequence containing 20 amino acids.

4.2 Global pollination via Lévy distribution

As mentioned earlier, Lévy flights are one of the most effective search mechanisms in the
FPA algorithm, owing to their benefits and the ability to efficiently explore the search
space with their step length properties [54]. However, they have been employed in the
FPA algorithm for continuous optimization problems only. To utilize them in our discrete
algorithm without forfeiting their advantages, we associate each value generated by the
Lévy flights with a protein sub-sequence that we rotate using the rotation rules presented
below [4]. Suppose n is the length of a given protein sequence p1p2 . . . pn. We divide the
interval [0, 1] into k subintervals, where k ≤ n. We then generate a Lévy flight value v
and define the step length L according to the following table.

v
[
0, 1
k

[ [1
k
,

2
k

[
· · ·

[
k − 1
k

, 1
]

L
[
1, n
k

[ [
n

k
,
2n
k

[
· · ·

[
(k − 1)n

k
, n

]

After defining the range of the generated value v in the first row, we generate a random
number d within the corresponding range in the second row. The generated value d
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represents the sub-sequence length that will be rotated as follows: Let u be a random
number such that u ∈ {1, . . . , n − d}. The sub-sequence to be rotated is defined as
s = pupu+1 . . . pd. We rotate s by 60◦, 120◦, 180◦, 240◦, or 300◦, based on a random
number j, where j ∈ {1, 2, 3, 4, 5} as illustrated in Table 1.

The corespondent direction after rotation

Direction 60◦ 120◦ 180◦ 240◦ 300◦

1 2 3 4 5 6

2 3 4 5 6 1

3 4 5 6 1 2

4 5 6 1 2 3

5 6 1 2 3 4

6 1 2 3 4 5

Table 1: Rotation rules in 2D triangular lattice.

Rotated by 300◦

(a) (b)
Figure 3: An example of rotation rules: the selected subsequence of the solution (a) is
rotated by 300◦ to produce the solution (b).

4.3 Global pollination via mutation operator

We use the mutation operator of GA to increase the diversity of the search process [20].
In our suggested algorithm, the mutation operation is performed by selecting a random
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position in a given solution x, and replacing the value at that position with a randomly
chosen value from the solution space, as illustrated in Figure 4.

x y

1 1 6 6 4 6 4 3 4 2 Mutation −→ 1 1 6 6 4 4 3 4 2 4

Figure 4: An example of the mutation operation is illustrated by replacing the value at
the 6th position of solution x from 6 to 4, resulting in a new solution y.

4.4 Local pollination via tabu search

To enhance the quality of solutions generated by the Lévy flight step, we adopt each
solution as an initial solution in the Tabu Search (TS) algorithm [12, 11]. In the proposed
TS algorithm, the neighbors of a given solution are determined through local movements.
Specifically, a diagonal move is applied to a randomly selected amino acid by swapping
its direction with that of its preceding amino acid, as shown in Figure 5). To avoid cyclic
movements, we add each selected amino acid to the tabu list T . Any existing amino acids
in the tabu list are excluded from future selections. The proposed algorithm follows the
FIFO principle; that is, if the tabu list reaches its capacity, the first introduced element
will be removed from the list (see Algorithm 3).

(b)(a)

Figure 5: An example of the diagonal move, the obtained solution (b), E(b) = −12 is
better than the initial solution a, E(a) = −8.
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Algorithm 3 The proposed Tabu Algorithm: TS
Require: A feasible solution x = (x1, . . . , xn).
Ensure: The best found solution for x∗.

Begin
Calculate f(x);
x∗ = x;
i = 0
T = {∅}// Tabu list;
while i ≤ Max (maximum number of iterations) do

j = random amino acids, j ∈ {2, 1, ..., n− 1}
if j ∈ T then

x′= diagonal pull-move (x, j);
T = T ∪ {j};
if f(x′) < f(x) then

x = x′;
end if

end if
if f(x) < f(x∗) then

x∗ = x;
end if
i = i+ 1;

end while
End

4.5 Local pollination via crossover operator

The crossover operation consists of combining two or more solutions to create new high-
quality solutions [20]. For our algorithm, we use a crossover operation with a crossover
point. It consists of generating a random position c and exchanging the directions of
movement between two selected solutions called parents (x1, x2). As we show in Figure
6, this operation generates two new solutions called children (y1, y2). For our algorithm,
we choose the best of them to be a candidate solution for the next step.

x1 y1

1 1 6 6 4 6 4 3 4 2 1 1 6 6 4 4 3 4 2 4
−→

x2 Crossover y2

6 4 6 6 6 4 3 4 2 4 6 4 6 6 6 6 4 3 4 2

Figure 6: An example of a crossover operation is illustrated by permuting the subsequence
limited to the fifth position in the selected parent solutions x1 and x2, resulting in the
new solutions y1 and y2.
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5 Experimental Results

In this section, we evaluate the effectiveness and stability of the proposed HFPA for solv-
ing the PSP problem. To conduct this experimental study, we use two datasets containing
various protein sequences, as reported in Table 2 [39, 50, 6] and Table 3 [47, 22]. The
symbol (...)k denotes the repetition of the sub-sequence in brackets k times. The last
column shows the best energy values reported in the literature denoted by E∗. We com-
pare the performance of the proposed algorithm against the most efficient state-of-the-art
methods reported in the literature. The comparison is based on the best, average, and
worst results obtained from 20 independent runs for each instance.
To conduct our experimental study, we varied the value of each parameter in our algorithm
and selected the best values that achieved the optimal results. Based on our preliminary
experimental results, the appropriate values for the parameters of the HFPA algorithm
are reported in Table 4.
We present the results of our proposed algorithm, HFPA, and compare them with state-of-
the-art algorithms such as Standard Genetic Algorithm (SGA), Hybrid Genetic Algorithm
(HGA) [16], ERS-GA (a hybrid genetic algorithm that combines GA algorithm and ERS
strategy), Hybrid Hill-Climbing-Genetic Algorithm (HHGA) [48], IMOG (a hybridization
of Ions Motion Optimization algorithm and Greedy algorithm) [53], Tabu Search (TS) [2],
Extended Particle Swarm Optimization algorithm (EPSO) [13], and GALSTS (a hybrid
version of genetic algorithm that combines Genetic Algorithm, Local Search algorithm,
and Tabu Search strategy) [40]. The best predictions achieved by each algorithm are
reported in Table 5.
From Table 5, we clearly see that the suggested HFPA algorithm achieves the best known
energy value for the majority of instances and produces high-quality structures when
compared to state-of-the-art algorithms. Although all the listed algorithms are able to
produce the optimal structure for short and medium-sized instances, i.e., from the instance
A1 to A3, with its efficient search strategy, which establishes a good balance between ex-
ploration and exploitation, HFPA achieves better results than state-of-the-art algorithms,
with a significant gap for large and complex instances (i.e., from the instance A7 to A10).
In comparison, we observe that GALSTS is the most competitive algorithm against the
proposed algorithm.
For the second benchmark instance, Table 6 presents results that demonstrate the high
performance of the proposed algorithm in predicting the optimal structure for all short
and medium protein sequences. In comparison, simulation results show that the IMOG
[53] and the proposed HFPA algorithm outperform the Multimeme algorithm presented
in [22] (column MMA) for some sequences, with a significant difference observed for the
sequence B20. The IMOG and HFPA algorithms achieved the lowest energy values for
all tested instances without exception. However, MMA was unable to find the optimal
structure for instances B15, B18, B19, and B20.
To analyze the convergence behavior and stability of our algorithm, Table 7 presents the
statistical results obtained by the suggested HFPA algorithm and state-of-the-art algo-
rithms for the first set of benchmark problems. The table reports the best values and
average values over 20 independent runs for each instance.
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Based on the results presented in Table 7, we observe that for the first four instances (i.e.,
from A1 to A4), all the compared algorithms perform well and can generate high-quality
structures with the best known energy value. However, compared to IMOG, GATSLS,
ERS-GA, and HHGA, our proposed HFPA algorithm is more stable and robust in terms
of average results. The statistical results for the last five instances, which involve more
complex and longer sequences, demonstrate a significant improvement achieved by the
proposed algorithm with a considerable gap in the best and average results compared to
state-of-the-art algorithms, especially when compared to ERS-GA, HHGA, and IMOG.
For instance, for A7, the difference between HFPA and ERS-GA, HHGA, and IMOG
ranges from -5 to -16, and for instance A8, it ranges from -10 to -26.
To evaluate the performance and search capabilities of the proposed HPFA algorithm
compared to the standard FPA and GA algorithms, we implemented all three algorithms
using the same initial population of 200 randomly generated solutions and the same num-
ber of generations. The GA algorithm had a crossover rate of 0.85 and a mutation rate
of 0.05, as used in [16]. The FPA algorithm used Lévy flights for global pollination and
a local search algorithm for local pollination. Each algorithm was run 15 times indepen-
dently for each instance, and the statistical results are presented in Table 8. The results
clearly show that the HPFA algorithm outperforms the GA and FPA algorithms for the
majority of tested instances in terms of the best, worst, and average results. Additionally,
the worst results produced by HPFA are better than the best results produced by GA
and FPA. This excellent balance between global and local search techniques integrated
into the proposed HPFA justifies its efficiency. The HPFA is more efficient in the local
search phase using the crossover operation and tabu search algorithm, while Lévy flights
and mutation improve its capability during the global search phase.

Seq. Length Sequence E∗

A1 20 (HP )2PH(HP )2(PH)2HP (PH)2 -15

A2 24 H2P 2(HP 2)6H2 -17

A3 25 P 2HP 2(H2P 4)3H2 -12

A4 36 P (P 2H2)2P 5H5(H2P 2)2P 2H(HP 2)2 -24

A5 48 P 2H(P 2H2)2P 5H10P 6(H2P 2)2HP 2H5 -43

A6 50 H2(PH)3PH4PH(P 3H)2P 4(HP 3)2HPH4(PH)3PH2 -40

A7 60 PH(PH3)2P (PH2PH)2H(HP )3(H2P 2H)2PHP 4(H(P 2H)2)2 NA

A8 64 H12(PH)2((P 2H2)2P 2H)3(PH)2H11 NA

A9 85 H4P 4H12P 6(H12P 3)3HP 2(H2P 2)2HPH NA

A10 100 P 3H2P 2H4P 2H3(PH2)3H2P8H6P 2H6P 9HPH2 NA

PH11P 2H3PH2PHP 2HPH3P 6H3

NA: refers for ’data not accessible in literature’.

E∗: refers for ’best know energy value’.

Table 2: The first set of benchmark instances for the HP problem is in a 2D triangular
lattice.
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Seq. Length Protein sequence in the H-P model E∗

B1 12 H(HP )5H -11

B2 14 HHPP (HP )5 -11

B3 14 H(HPP )2(HP )3H -11

B4 16 HHP (HPP )4H -11

B5 16 H(HPP )2(HP )3PHP -11

B6 17 H(HPP )5H -11

B7 17 H(HH)7HH -17

B8 20 H(HPP )2(HP )3(PH)3H -17

B9 20 H(HP )4H(PPH)3H -17

B10 21 H(HPP )2(HPHPP )2HPHH -17

B11 21 HHP (HPP )2(HP )2(HPP )2HH -6

B12 21 HHPP (HP )3(PH)2(PPH)2H -17

B13 22 H(HPP )2(HP )3(PHP )2PHH -17

B14 23 HH(HP )9HHH -25

B15 24 H(HPP )7HH -17

B16 24 HH(HP )3(PH)7HH -25

B17 24 HH(HP )4(PH)6HH -25

B18 30 HH(HPP )4H(PHPPH)2PPHHH -25

B19 30 HH(HPP )3(HP )2(PH)2(PPH)3HH -25

B20 37 HH(HPP )3(HP )2H(PPH)3(P )5(HP )2HHH -29

E∗: refers for ’best know energy value.’

Table 3: The second set of HP benchmark instances in 2D triangular lattice.

Parameter The tested values The best value

Switch probability p p ∈ {0.1, 0.2, 0.4, 0.6, 0.8} 0.6

Step Lévy flight λ b ∈ {0.5, 1, 1.5, 2, 2.5} 1.5

Population size m m ∈ {50, 80, 100, 150, 200, 250} 80 if n ≤ 50

150 if n > 150

Tabu search size T T ∈
{
n

5 ,
n

4 ,
n

3 ,
n

2

}
n

4

n is the protein sequence length.

Table 4: Parameter Settings of HFPA algorithm.
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Seq. Length SGA HGA TS ERS-GA HHGA EPSO IMOG GALSTS HFPA

A1 20 -11 -15 -15 -15 -15 NA -15 -15 -15

A2 24 -10 -13 -17 -13 -17 -17 -17 -17 -17

A3 25 -10 -10 -12 -12 -12 -12 -12 -12 -12

A4 36 -16 -19 -24 -20 -23 -24 -24 -24 -24

A5 48 -26 -32 -40 -32 -41 -40 -40 -43 -43

A6 50 -21 -23 NA -30 -38 NA -40 -40 -40

A7 60 -40 -46 -70 -55 -66 NA -67 -70 -71

A8 64 -33 -46 -50 -47 -63 NA -63 -67 -73

A9 85 NA NA NA NA NA NA NA -98 -100

A10 100 NA NA NA NA NA NA NA -87 -91

Values in bold represent the best energy value for the correspondent instance.

NA refers for ’data not accessible in literature.’

Table 5: The best results were achieved by the proposed HFPA for the first set of bench-
mark instances against the state-of-the-art algorithm.

Seq. Length E∗ MMA IMOG HFPA

B1 12 -11 NA -11 -11
B2 14 -11 -11 -11 -11
B3 14 -11 -11 -11 -11
B4 16 -11 -11 -11 -11
B5 16 -11 -11 -11 -11
B6 17 -11 -11 -11 -11
B7 17 -17 -17 -17 -17
B8 20 -17 -17 -17 -17
B9 20 -17 -17 -17 -17
B10 21 -17 -17 -17 -17
B11 21 -17 -17 -17 -17
B12 21 -17 -17 -17 -17
B13 22 -17 -17 -17 -17
B14 23 -25 -25 -25 -25
B15 24 -17 -16 -17 -17
B16 24 -25 -25 -25 -25
B17 24 -25 -25 -25 -25
B18 30 -25 -24 -25 -25
B19 30 -25 -24 -25 -25
B20 37 -29 -26 -29 -29

Table 6: The best results were achieved by the proposed HFPA for the second set of
benchmark instances against the state-of-the-art algorithms.
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ERS-GA HHGA IMOG GALSTS HFPA

Seq. Length Best Mean Best Mean Best Mean Best Mean Best Mean

A1 20 -15 -12.50 -15 -14.73 -15 -14.73 -15 -14.86 -15 -15

A2 24 -13 -10.20 -17 -14.93 -17 -14.93 -17 -15.53 -17 -17

A3 25 -12 -8.47 -12 - 11.57 -12 -11.57 -12 -12 -12 -12

A4 36 -20 -16.17 -23 -21.27 -23 -21.27 -24 -21.93 -24 -23.85

A5 48 -32 -28.13 -41 - 37.30 -41 -37.30 -43 -39.86 -43 -42.10

A6 50 -30 -25.30 -38 -34.10 -38 -34.10 -40 -37.6 -40 -38.60

A7 60 -55 -49.43 -66 - 61.83 -66 -61.83 -70 -68.26 -71 -69.10

A8 64 -47 -42.37 -63 - 56.53 -63 -56.53 -67 -58.46 -73 -69.43

Table 7: A comparative study on the stability and best prediction of the suggested HFPA
against the most efficient state-of-the-art algorithms.

GA FPA HFPA

Seq. Lenght E∗ Best Worst Mean Best Worst Mean Best Worst Mean

A1 20 -15 -15 -10 -11.70 -15 -15 -15 -15 -15 -15

A2 24 -17 -16 -12 -14.50 -17 -14 -15.65 -17 -17 -17

A3 25 -12 -12 -9 -10.50 -12 -11 -11.55 -12 -12 -12

A4 36 -24 -19 -16 -18.20 -23 -20 -21.35 -24 -23 -23.80

A5 48 -43 -35 -31 -32.70 -41 -36 -38 -43 -41 -42.55

A6 50 -40 -36 -31 -33.65 -38 -34 -35.80 -40 -39 -39.75

A7 60 NA -61 52 -55.55 -67 -61 -63.35 -71 -68 -70.20

A8 64 NA -60 -50 -56.85 -63 -54 -59.05 -73 -68 -71.10

Table 8: Comparison of statistical results. The best, worst and average results obtained
by HFPA are compared to those obtained by FA, and GA. E∗ is the best energy value.
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Figure 7: The conformations obtained by HFPA for instances from A1 to A6.
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Figure 8: The conformations obtained by HFPA for instances from A7 to A10.

6 Conclusion

Predicting the native structure of a protein from its amino acid sequence is one of the most
challenging optimization problems in biology and bioinformatics. The difficulty of effi-
ciently solving this problem arises from the enormous solution space, even for a sequence
with a small number of amino acids. Although simplified models like Dill’s Hydrophobic-
Polar (HP) model have been proposed to reduce the conformational space, the Protein
Structure Prediction (PSP) problem remains an NP-hard problem. In recent years, many
evolutionary algorithms and metaheuristics have been used to address the PSP problem
under the HP simplified model. The exible balancing of exploration and exploitation of
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solutions is one of the most essential components of metaheuristics, and it plays a key
role in their effectiveness. In this work, we proposed a discrete hybrid ower pollination
algorithm that combines classical FPA with genetic and tabu search algorithms. We chose
the FPA algorithm due to its demonstrated high exploration in solving various optimiza-
tion problems. To enhance the PFA’s capacity in the intensification phase, we integrated
the crossover operator of GA and the Tabu Search algorithm, both of which are very
efficient in exploiting the solution search space. The simulation results showed that our
algorithm successfully predicted the optimal structure for several instances of PSP under
the HP model in the 2D triangular lattice. Furthermore, the proposed HFPA algorithm
outperformed existing state-of-the-art algorithms. In future work, we aim to use the
proposed algorithm to solve other discrete optimization problems. Additionally, we can
develop other hybrid metaheuristics based on FPA for global optimization problems, such
as combining FPA with Particle Swarm Optimization (PSO).

References

[1] Eric T. Baldwin, Irene T. Weber, Robert St Charles, Jian-Cheng Xuan, Ettore Ap-
pella, Masaki Yamada, Kouji Matsushima, B. F. Edwards, G. Marius Clore, and
Angela M. Gronenborn. Crystal structure of interleukin 8: symbiosis of NMR and
crystallography. Proceedings of the National Academy of Sciences, 88(2):502–506,
1991. Publisher: National Acad Sciences.

[2] Hans-Joachim Bockenhauer, Abu Zafer M. Dayem Ullah, Leonidas Kapsokalivas,
and Kathleen Steinhofel. A local move set for protein folding in triangular lattice
models. In International Workshop on Algorithms in Bioinformatics, pages 369–381.
Springer, 2008.

[3] Nabil Boumedine and Sadek Bouroubi. An Improved Simulated Annealing Algorithm
for Optimization of Protein Folding Problem. In 2020 2nd International Workshop
on Human-Centric Smart Environments for Health and Well-being (IHSH), pages
246–251. IEEE, 2021.

[4] Nabil Boumedine and Sadek Bouroubi. Protein folding in 3D lattice HP model using a
combining cuckoo search with the Hill-Climbing algorithms. Applied Soft Computing,
119:108564, 2022. Publisher: Elsevier.

[5] Dwaipayan Chakraborty, Sankhadip Saha, and Samaresh Maity. Training feedfor-
ward neural networks using hybrid flower pollination-gravitational search algorithm.
In 2015 international conference on futuristic trends on computational analysis and
knowledge management (ABLAZE), pages 261–266. IEEE, 2015.

[6] Thomas Dandekar and Patrick Argos. Folding the main chain of small proteins with
the genetic algorithm. Journal of Molecular Biology, 236(3):844–861, 1994. Publisher:
Elsevier.



Hybrid flower pollination algorithm for protein structure prediction problem 21

[7] S. Decatur and Serafim Batzoglou. Protein folding in the Hydrophobic-Polar model
on the 3D triangular lattice. In 6th Annual MIT Laboratory for Computer Science
Student Workshop on Computing Technologies, 1996.

[8] Ken A. Dill. Dominant forces in protein folding. Biochemistry, 29(31):7133–7155,
1990. Publisher: ACS Publications.

[9] Ken A. Dill and Justin L. MacCallum. The protein-folding problem, 50 years on.
science, 338(6110):1042–1046, 2012. Publisher: American Association for the Ad-
vancement of Science.

[10] Ivan Dotu, Manuel Cebrian, Pascal Van Hentenryck, and Peter Clote. On lattice
protein structure prediction revisited. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 8(6):1620–1632, 2011. Publisher: IEEE.

[11] Fred Glover. Tabu search part-I. ORSA Journal on computing, 1(3):190–206, 1989.
Publisher: Informs.

[12] Fred Glover and Manuel Laguna. Tabu search. In Handbook of combinatorial opti-
mization, pages 2093–2229. Springer, 1998.

[13] Yuzhen Guo, Zikai Wu, Ying Wang, and Yong Wang. Extended particle swarm
optimisation method for folding protein on triangular lattice. IET systems biology,
10(1):30–33, 2016. Publisher: IET.

[14] Faten Hajjej, Ridha Ejbali, and Mourad Zaied. An efficient deployment approach for
improved coverage in wireless sensor networks based on flower pollination algorithm.
NETCOM, NCS, WiMoNe, GRAPH-HOC, SPM, CSEIT, pages 117–129, 2016.

[15] John Hardy. Alzheimer’s disease: the amyloid cascade hypothesis: an update and
reappraisal. Journal of Alzheimer’s disease, 9(s3):151–153, 2006. Publisher: IOS
press.

[16] Md Tamjidul Hoque, Madhu Chetty, and Laurence S. Dooley. A hybrid genetic algo-
rithm for 2D FCC hydrophobic-hydrophilic lattice model to predict protein folding.
In Australasian Joint Conference on Artificial Intelligence, pages 867–876. Springer,
2006.

[17] Md Kamrul Islam and Madhu Chetty. Clustered memetic algorithm with local heuris-
tics for ab initio protein structure prediction. IEEE Transactions on Evolutionary
Computation, 17(4):558–576, 2012. Publisher: IEEE.

[18] Prince Jain, Shonak Bansal, Arun Kumar Singh, and Neena Gupta. Golomb ruler
sequences optimization for FWM crosstalk reduction: multi-population hybrid flower
pollination algorithm. In Progress in electromagnetics research symposium (PIERS),
Prague, Czech Republic, pages 2463–2467, 2015.

[19] R. Jensi and G. Wiselin Jiji. Hybrid data clustering approach using k-means and
flower pollination algorithm. arXiv preprint arXiv:1505.03236, 2015.

[20] Holland John. Holland. genetic algorithms. Scientific american, 267(1):44–50, 1992.



22 N. BOUMEDINE & S. BOUROUBI

[21] Martin Karplus. The Levinthal paradox: yesterday and today. Folding and design,
2:S69–S75, 1997. Publisher: Elsevier.

[22] Natalio Krasnogor, B. P. Blackburne, Edmund K. Burke, and Jonathan D. Hirst.
Multimeme algorithms for protein structure prediction. In International Conference
on Parallel Problem Solving from Nature, pages 769–778. Springer, 2002.

[23] Sahil Lalljith, Ismail Fleming, Umeshan Pillay, Kiveshen Naicker, Zachary Naidoo,
and Akshay Kumar Saha. Applications of Flower Pollination Algorithm in Electrical
Power Systems: A Review. IEEE Access, 2021. Publisher: IEEE.

[24] Kit Fun Lau and Ken A. Dill. A lattice statistical mechanics model of the confor-
mational and sequence spaces of proteins. Macromolecules, 22(10):3986–3997, 1989.
Publisher: ACS Publications.

[25] Kanagasabai Lenin and Bhumanapally RavindhranathReddy. Reduction of real
power loss by using Fusion of Flower Pollination Algorithm with Particle Swarm Op-
timization. Journal of the Institute of Industrial Applications Engineers Vol, 2(3):97–
103, 2014.

[26] Cheng-Jian Lin and Ming-Hua Hsieh. An efficient hybrid Taguchi-genetic algorithm
for protein folding simulation. Expert systems with applications, 36(10):12446–12453,
2009. Publisher: Elsevier.

[27] Szymon \Lukasik and Piotr A. Kowalski. Study of flower pollination algorithm for
continuous optimization. In Intelligent Systems’ 2014, pages 451–459. Springer, 2015.

[28] Ong Kok Meng, Ong Pauline, Sia Chee Kiong, Hanani Abdul Wahab, and Noor-
maziah Jafferi. Application of modified flower pollination algorithm on mechanical
engineering design problem. In IOP conference series: materials science and engi-
neering, volume 165, page 012032. IOP Publishing, 2017. Issue: 1.

[29] Boumedine Nabil and Bouroubi Sadek. Protein structure prediction in the HP model
using scatter search algorithm. In 2020 4th International Symposium on Informatics
and its Applications (ISIA), pages 1–5. IEEE, 2020.
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