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1 Introduction and background

In 1977, J. H. Jordan, R. Walch, and R. J. Wisner [5] investigated the properties of
triangles with integer side lengths, developing methods to count triangles with a fixed
perimeter and integer sides through generating functions and combinatorial techniques.
Two decades later, in 1997, Andrews examined the enumeration of such triangles under
specific constraints, linking this problem to integer partition theory [1]. His findings
established a formula relating the count of these triangles to the partition function p(n),
which represents the number of ways an integer n can be expressed as a sum of positive
integers, irrespective of order (see, e.g., [2, 4, 7]). In 2019, James East and Ron Niles
tackled a related problem, focusing on enumerating distinct integer m-gons with a given
perimeter n, using dihedral group actions on Dn [6]. This paper addresses the problem
of counting incongruent quadrilaterals with distinct side lengths for a given perimeter
n. Bouroubi has explored similar problems, specifically for incongruent ordered integer
quadrilaterals [3].

Theorem 1 ([3]) The number of incongruent ordered integer quadrilaterals with perime-
ter n ≥ 4 is: {

1

576
n (n+ 3) (2n+ 3)− (−1)n

192
n (n− 5)

}
,

where, {x} denotes the nearest integer to the real number x.

2 Definitions and notations

� A partition of a positive integer n is a way of representing n as a sum of positive
integers. Formally, a partition of n is a sequence λ = (λ1, . . . , λk) of positive integers
such that:

0 < λ1 ≤ · · · ≤ λk and λ1 + · · ·+ λk = n.

Here, λ1, . . . , λk are called the parts of the partition, and k denotes the length of
the partition (i.e., the number of parts).

Two partitions that differ only in the order of their parts are considered identical.
For example, the integer 5 has the following partitions:

(5); (1, 4); (2, 3); (1, 1, 3); (1, 2, 2); (1, 1, 1, 2); (1, 1, 1, 1, 1).

� A partition λ of a positive integer n into k distinct parts is defined as:

0 < λ1 < · · · < λk.

� A partition λ is said to be polygonal if it satisfies the polygonal inequality, that is:

λ1 + · · ·+ λk−1 > λk.

If also, the parts are all distinct, the partition is called a polygonal partition with
distinct parts.
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� The following notations, used in this paper, provide a way to distinguish between
different types of partitions based on the number and properties of the parts:

– p(n, k): the number of partitions of n into exactly k parts.

– q(n, k): the number of partitions of n into exactly k distinct parts.

– qg(n, k): the number of polygonal partitions of n into k distinct parts.

– qg(n, k): the number of non-polygonal partitions of n into k distinct parts.

Of course, we have:

q(n, k) = qg(n, k) + qg(n, k).

� Let us define congruence between two k-gons P and Q as follows: Let P and Q be
two k-gons with side lengths λ1, . . . , λk and µ1, . . . , µk, respectively. We consider P
and Q to be congruent if and only if the k-tuple (λ1, . . . , λk) can be transformed
into (µ1, . . . , µk) through a combination of cyclic reordering and/or reversal of the
sequence, regardless of the starting side and the direction of reading (clockwise or
counterclockwise).

– The number of incongruent k-gons with perimeter n, having distinct ordered
side lengths, is denoted by g(n, k).

– The number of incongruent k-gons with perimeter n, having distinct side
lengths in any order, is denoted by G(n, k).

For n = 10, there exist 3 incongruent quadrilaterals with distinct side lengths,
among which only one is ordered, namely the leftmost one.

4
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3 Auxiliary results

Lemma 2 For n ≥ 10 and k ≥ 3, it holds that:

qg(n, k) =

bn2 c∑
m=6

q(m, k − 1).

Here, bxc denotes the floor function, which gives the greatest integer less than or equal to
the real number x.
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Proof. A non-polygonal partitions λ of n in k distinct parts, λ1, . . . , λk, is solution of
system: 

n = λ1 + · · ·+ λk−1 + λk;

0 < λ1 < · · · < λk,

λk ≥ λ1 + · · ·+ λk−1.

(1)

Thus, we have
n− λk ≤ λk.

Therefore,

λk ≥
n

2
·

This leads to the conclusion that
n− λk ≤

n

2
·

Consequently, the number of solutions to the system (1) is equal to the number of parti-
tions of n− λk into k − 1 parts, where n− λk ≤ bn2 c.

For the specific case where n = 18 and k = 4, there exist seven non-polygonal partitions,
which can be enumerated as follows:

(1, 2, 3, 12); (1, 2, 4, 11); (1, 3, 4, 10); (1, 2, 5, 10); (1, 2, 6, 9); (1, 3, 5, 9) and (2, 3, 4, 9).

Which is clearly confirmed by our result:

qg(18, 4) =

b9c∑
m=6

q(m, k − 1) = 1 + 1 + 2 + 3.

Observation 3 For n ≥ 10 and k ≥ 3, we can also state that:

qg(n, k) =

bn2 c∑
m=3

p

(
m−

(
k − 1

2

)
, k − 1

)
,

where

(
i

j

)
is the binomial coefficient.

The result follows from the following identity [1]:

q(n, k) = p

(
n− k(k − 1)

2
, k

)
.

4 Main results

Theorem 4 For n ≥ 10 and k ≥ 3, it follows that:

g(n, k) = q(n, k)−
bn2 c∑
m=6

q(m, k − 1).
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Proof. Given a polygonal partition λ = (λ1, . . . , λk) with distinct parts, we can construct
a polygon with k sides of distinct lengths corresponding to the parts of the partition, and
conversely, each such polygon corresponds to a polygonal partition with distinct parts.

Thus, we have
g(n, k) = qg(n, k).

Leveraging the relation q(n, k) = qg(n, k) + qg(n, k), the result immediately follows from
Lemma 2.

When n = 18, we observe 8 polygonal partitions into 4 parts, namely:

(1, 4, 5, 8); (1, 3, 6, 8); (1, 2, 7, 8); (2, 3, 5, 8); (2, 4, 5, 7); (1, 4, 6, 7); (2, 3, 6, 7) and (2, 4, 5, 7).

This aligns with our theoretical result, as demonstrated by the equation:

g(18, 4) = q(18, 4)−
9∑

m=6

q(m, 3) = 15− 7 = 8.

Theorem 5 For n ≥ 6, we have

n∑
m=6

q(m, 3) =
n3

36
− 5n2

24
+

11n

36
+

1

3

⌊n
3

⌋
+

(−1)n − 1

16
·

Proof. The generating function of q(n, 3) is given by [2]:

f(z) =
z6

(1− z)(1− z2)(1− z3)
·

Then
n∑

m=6

q(m, 3) = [zn]

(
f(z)

1− z

)
.

By expressing
f(z)

1− z
as a sum of partial fractions, we obtain:

f(z)

1− z
=

1

9

z + 1

(z2 + z + 1)
+

119

144

1

(z − 1)
+

1

16

1

(z + 1)
+

89

72

1

(z − 1)2
+

3

4

1

(z − 1)3
+

1

6

1

(z − 1)4
·

After some straightforward calculations, we find:

z + 1

z2 + z + 1
=
∑
n≥0

anz
n,

where
an = 1− n+ 3

⌊n
3

⌋
.

Consequently, the sum becomes

n∑
m=6

q(m, 3) =
n3

36
− 5n2

24
+

11n

36
+

1

3

⌊n
3

⌋
+

(−1)n − 1

16
·
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Corollary 6 For n ≥ 12, we have:⌊n
2

⌋
∑
m=6

q(m, 3) =
1

576
n (n− 11) (2n+ 3 (−1)n − 11) +

5

48
(−1)n +

1

3

⌊
2n+ (−1)n − 1

12

⌋
+

+
(−1)b

n
2 c

16
− 1

6
·

Proof. The result follows simply through substitution and straightforward computations
from Theorem 5, by considering that:⌊n

2

⌋
=
n

2
− 1− (−1)n

4
·

Theorem 7 For n ≥ 10, the number of partitions of n into exactly k distinct parts is:

q(n, 4) =
n3

144
− 5n2

48
+

(9 (−1)n + 103)n

288

+
1

96

(
32

⌊
n− 1

3

⌋
− 6 (−1)b

3n
2 c − 6(−1)b

n
2 c − 15(−1)n − 37

)
·

Proof. The generating function for q(n, 4) is given as follows [2]:

g(z) =
z10

(1− z) (1− z2) (1− z3) (1− z4)
·

By expanding g(z) into partial fractions, we obtain:

g(z) = 1 +
19

16 (z − 1)
− 3

16 (z + 1)
+

239

288 (z − 1)2
+

1

32 (z + 1)2
+

7

24 (z − 1)3
+

1

24 (z − 1)4

− 1

8 (z2 + 1)
− 1

9 (z2 + z + 1)
·

Through expansions in power series and detailed calculations, we get:

g(z) = 1 +
∑
n≥0

(
−19

16
− 3 (−1)n

16
+

239 (n+ 1)

288
+

(−1)n (n+ 1)

32
− 7 (n+ 1) (n+ 2)

48

)

+
∑
n≥0

(
(n+ 1) (n+ 2) (n+ 3)

144
− bn

8
− cn

9

)
zn,

where

bn = (−1)b
n
2 c
(

1 + (−1)n

2

)
,
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and

cn = n− 2− 3

⌊
n− 1

3

⌋
·

Direct computation verifies the validity of the result.

Theorem 8 For n ≥ 10, the number of incongruent quadrilaterals with perimeter n and
distinct ordered side lengths is given by:

g(n, 4) =

{
n3

288
− ((−1)n + 9)n2

192
+

17 (3 (−1)n + 5)n

576
− 25 (−1)n

96
− 1

3

⌊
2n+ (−1)n − 1

12

⌋
+

1

3

⌊
n− 1

3

⌋}
·

Proof. By applying Theorem 4, Corollary 6, and Theorem 7, and substituting k with 3,
we obtain:

g(n, 4) =
n3

288
− ((−1)n + 9)n2

192
+

17 (3 (−1)n + 5)n

576
− 25 (−1)n

96
− 1

3

⌊
2n+ (−1)n − 1

12

⌋
+

1

3

⌊
n− 1

3

⌋
− 1

8
(−1)b

n
2 c − 1

16
(−1)b

3n
2 c − 7

32
·

The result is confirmed, as the following inequality holds:∣∣∣∣−1

8
(−1)b

n
2 c − 1

16
(−1)b

3n
2 c − 7

32

∣∣∣∣ < 1

2
·

Finally, we present the principal result of this paper, which summarizes the key findings
of our study.

Theorem 9 For n ≥ 10, the number of incongruent quadrilaterals with perimeter n and
distinct side lengths, whether in ordered or unordered form, is given by:

G(n, 4) = 3g(n, 4).

Which implies:

G(n, 4) = 3

{
n3

288
− ((−1)n + 9)n2

192
+

17 (3 (−1)n + 5)n

576
− 25 (−1)n

96
− 1

3

⌊
2n+ (−1)n − 1

12

⌋
+

1

3

⌊
n− 1

3

⌋}
·

Proof. Consider a polygonal partition λ = (λ1, λ2, λ3, λ4) of n into 4 distinct parts,
satisfying:

0 < λ1 < λ2 < λ3 < λ4 and n = λ1 + λ2 + λ3 + λ4.

This partition uniquely determines an ordered quadrilateral with perimeter n. Further-
more, each partition gives rise to two additional incongruent quadrilaterals, as shown in
the figure below:

λ4

λ3

λ2

λ1

λ3

λ4

λ2

λ1

λ4

λ2

λ3

λ1
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5 Numerical Application

The following table gives calculated a few values of G(n, 4), for 10 ≤ n ≤ 30.

n 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
G(n, 4) 3 3 3 6 9 12 15 21 24 33 36 48 54 69 72 93 99 123 129 159 165
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