Laboratoire d'Informatique Fondamentale, de Recherche Opérationnelle, de Combinatoire et d'Économétrie

Availaible on line at http://www.liforce.usthb.dz bulletin-liforce@usthb.dz Bulletin du Laboratoire 01 (2025) 01 - 10

A new upper bound for the coalition number

Soumia KOUIDER AIAD^{1,*}, Noureddine IKHLEF ESCHOUF², Azeddine BENKACI² and Sadek BOUROUBI¹

¹Laboratory L'IFORCE, Faculty of Mathematics, University of Sciences and Technology Houari Boumediene, P.B. 32 El-Alia, 16111, Bab Ezzouar, Algiers, Algeria.

²Laboratory LMA, Department of Mathematics and Computer Science, University of Médéa, Algeria.

kouideraiad.soumia@univ-medea.dz¹,sbouroubi@usthb.dz¹, ikhlefeschouf.noureddine@univ-medea.dz², benkaci.azzedine@univ-medea.dz²

Abstract: A *coalition partition* of a graph $G = (V, E)$ is a partition of its vertex-set into $k \geq 1$ subsets V_1, V_2, \ldots, V_k such that each subset V_i is either (i) a singleton dominating set or (ii) not a dominating set but $V_i \cup V_j$ forms a dominating set for some other subset V_j . Such a partition is called a *c*-partition. The *coalition number* of a graph G , denoted $C(G)$, is the largest number of subsets in a c-partition of G . In this paper, we establish a new upper bound for $C(G)$ and characterize all triangle-free graphs achieving this bound.

Keywords: Coalition; Coalition partition; Coalition number.

2020 Mathematics Subject Classification: 05C69.

^{*}Corresponding author: Soumia Kouider Aiad

1 Introduction

In this paper, we consider only graphs that are finite, undirected and simple. Let $G =$ (V, E) be a graph of order $n = |V|$. The *complement* of a graph $G = (V, E)$ is a graph \overline{G} defined on the same vertex set V, where two vertices are adjacent in \overline{G} if and only if are not adjacent in G. For a non-empty set $A \subseteq V$, we denote by $G \backslash A$ the subgraph induced by $V \backslash A$. For a vertex v of G, the *degree* of v is the number of edges incident to v. A vertex of degree $n-1$ is called a *full vertex*, while a vertex with degree zero is called an *isolated* vertex. If all vertices of G are isolated, we call G an *empty graph*, and we denoted it by \overline{K}_n . The *distance* between two vertices u and v in a connected graph G is the length of the shortest path between them. The *diameter*, denoted $\text{diam}(G)$ of a graph G is the maximum distance between any two vertices in G . The union of two vertex-disjoint graphs G and H is the graph $G + H$ whose vertex-set is $V(G) \cup V(H)$ and edge-set is $E(G) \cup E(H)$. For a given graph H, a graph G is called H-free if G does not contain H as an induced subgraph. A *bipartite* graph G is a graph whose vertex-set V can be partitioned into two disjoint subsets V_1 and V_2 such that every edge in G connects a vertex in V_1 to a vertex in V_2 . A vertex v in V_1 (respectively, in V_2) is called a *charismatic* vertex if it is adjacent to every vertex in V_2 (respectively, in V_1). If all vertices in V_1 and V_2 are charismatic, G is a *complete bipartite* and is denoted by $K_{p,q}$, where $|V_1| = p$ and $|V_2| = q$. As usual, K_n , P_n and C_n denote the complete graph, path and cycle on n vertices, respectively. For other notation and terminology not defined here we refer the reader to $[8, 21]$.

A set $D \subseteq V$ in a graph G is called a *dominating set* of G if every vertex not in D has at least one neighbor in D. The domination number $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set in G. A dominating set of G with cardinality $\gamma(G)$ is called a γ -set of G. The concept of the domination in graphs has been studied extensively and several research papers have been published on this topic. For a survey on this area, we refer the reader to [12].

For a given graph G with vertex set V, two subsets V_1 and V_2 of V are said to form a coalition in G if neither V_1 nor V_2 is a dominating set, but their union $V_1 \cup V_2$ is a dominating set. A *coalition partition* (*c*-partition for short) in G is a partition of its vertexset into k subsets V_1, V_2, \ldots, V_k such that every set V_i is either a singleton dominating set, or is not a dominating set but forms a coalition with another set V_i $(j \neq i)$.

The coalition number of a graph G, denoted by $C(G)$, is the maximum k such that G admits a c-partition of cardianlity k. A c-partition of G with $k = C(G)$ is called a $C(G)$ partition.

The concept of c-partition was first introduced and studied by Haynes et al. in [13]. They proved that every graph G admits a c-partition and, as a consequence, deduced that every graph G of order $n \geq 1$ satisfies the following:

$$
1 \le C(G) \le n. \tag{1}
$$

They also determined the exact coalition numbers for paths and cycles in [13]. The same authors defined in [15] the notion of coalition graph and provided additional results in [14, 16, 17]. Further studies have explored the c-partition problem in certain specific classes of graphs. For instance, Bakhshesh et al. [4, 6] in trees and Alikhani et al. [1, 9] in cubic graphs. Other results regarding coalition partition for other parameters have been undertaken by Alikhani et al. for total coalition in [3] and for connected coalition in [2, 11]; Samadzadeh et al. for independent coalition in [22] and for paired coalition in [23]; Jafari et al. [18] for k-coalition; Mojdeh et al. for perfect coalition in [20] and for edge coalition in [19]; Golmohammadi et al. [10] for strong coalition. Further works on this topic can be found in [5, 7].

The main purpose of this paper is to propose a new upper bound for $C(G)$ and characterize all triangle-free graphs that attain this bound.

2 Preliminary Results

We start this section by giving an upper bound for the coalition number $C(G)$ in terms of *n* and $\gamma(G)$.

Theorem 1 Let G be a graph with order n and domination number γ . Then

$$
C(G) \le n - \gamma(G) + 2. \tag{2}
$$

This bound is sharp.

Proof. For the case $\gamma(G) = 1$, the result is obvious from (1). So, assume that $\gamma(G) \geq 2$. Therefore G has no full vertex. Set $k = C(G)$ and let $\pi = \{V_1, V_2, \ldots, V_k\}$ be a $C(G)$ partition of G. Then, we can write

$$
n = |V_1| + |V_2| + \dots + |V_k|.
$$
\n(3)

Without loss of generality, assume that V_1 and V_2 form a coalition. Then $|V_1|+|V_2| \geq \gamma(G)$. Combining this with (3), we obtain

$$
n \ge |V_1| + |V_2| + k - 2 \ge \gamma(G) + k - 2. \tag{4}
$$

This completes the proof. \blacksquare

The inequality (2) is sharp, for instance, for \overline{K}_n , for $K_p + K_{n-p}$ and for $K_p + \overline{K}_{n-p}$ (with $2 \le p \le n-1$, although this is not the case for complete graphs and stars. As $\gamma(G) \ge p$ when G has p components, the following result is immediate from Theorem 1.

Corollary 2 If G is a graph of order n with $p \geq 2$ connected components, then

$$
C(G) \le n - p + 2.
$$

Proposition 3 Let G be a graph of order n, diameter diam(G), domination number γ and with p connected components. If $C(G) = n$, then the following properties hold.

- (i) $\gamma(G) < 2$.
- (ii) $p \leq 2$, with equality if and only if G is the disjoint union of two complete graphs.

(iii) If G is connected, then $\text{diam}(G) \leq 3$.

Proof. (i) Follows from (2).

(ii) If $p \geq 3$, then $\gamma(G) \geq 3$, contradicting (i). Assume now that $p = 2$ and let G_1 and G_2 be the two components of G. For each i in $\{1,2\}$, let v_i be any vertex in G_i . Since $C(G) = n$, $\{v_1\}$ form a coalition with some singleton set in G_2 , say $\{v_2\}$. In this case, v_i must be adjacent to all the other vertices in G_i . Thus G_1 and G_2 both are complete graphs.

iii) Suppose that $d \geq 4$ and assume that $v_0-v_1-\cdots-v_d$ be a diametral path in G. In this case, the set $\{v_2\}$ cannot form a coalition with any other singleton set, which contradicts that $C(G) = n$.

3 Main result

Our aim result is the following.

Theorem 4 If G is a K_3 -free graph with at least two vertices, then equality holds in (2) if and only if $G \in \mathcal{G} \cup \mathcal{H} \cup \{C_5, K_2 + \overline{K}_p \ (p \geq 1), \ \overline{K}_n \ (n \geq 2) \}.$

The proof of Theorem 4 relies on the following definitions and lemmas.

Definition 1 (Family G) A graph G is in class G if it is obtained from $p \ge 1$ disjoint stars, each with at least three vertices, by adding a new vertex and connecting it to all the leaves of the stars, and possibly adding some isolated vertices. When G has no isolated vertices, it must hold that $p \geq 2$.

Definition 2 (Family H) A graph G is in class H if its vertex set can be partitioned into two disjoint classes X_1 and X_2 such that:

- G is bipartite with bipartition (X_1, X_2) , where $|X_1|, |X_2| \geq 2$.
- Every vertex in X_1 (respectively, X_2) has at most one non-neighbor in X_2 (respectively, X_1).
- If $|X_1| \neq |X_2|$, then both X_1 and X_2 contain at least one charismatic vertex.

Remark that every member G of H is connected unless G is $2K_2$. In addition, G has no full vertex, implying that $\gamma(G) \geq 2$. Since, there exists a vertex u in X_1 and a vertex v in X_2 such that u and v together dominate all vertices in G, it follows that $\gamma(G) = 2$.

The Figure 1 shows an example of three graphs : one is in the family $\mathcal G$ and the others are in the family H , along with their domination numbers.

Figure 1: Example of three graphs $G \in \mathcal{G}$ and $H_1, H_2 \in \mathcal{H}$ with their domination numbers.

Lemma 5 Let G be a graph of order $n > 2$ and domination number $\gamma(G)$. If G is a member of $\mathcal{G} \cup \mathcal{H}$, then $C(G) = n - \gamma(G) + 2$.

Proof. From(2), it suffices to show that $C(G) \geq n - \gamma(G) + 2$. If $G \in \mathcal{H}$, then it is straightforward to check that the partition of $V(G)$ into n singleton substes is a cpartition of G. Thus $C(G) \geq n = n - \gamma(G) + 2$ (since $\gamma(G) = 2$ by the remark before Lemma 5).

Assume now $G \in \mathcal{G}$. Let D be a γ -set of G, and let I (possibly empty) denote the set of isolated vertices in G, with $q = |I|$. Clearly $I \subseteq D$. For each $i \in \{1, 2, ..., p\}$, let c_i be the center of the *i*-th star, and let u be the vertex adjacent to all leaves of the $p \geq 1$ stars. By definition of G, we have $p + q \ge 2$. We first show that $|D| = p + q + 1$. Indeed, to dominate all vertices of G , the minimality of D requires that D must include all center vertices together with I and exactly one vertex among $V(G)\setminus (I\cup \{c_1, c_2, \ldots, c_n\})$. This imples that $|D| \geq p + q + 1$. To establish equality, we construct a dominating set D of size $p + q + 1$ by taking all vertices of I, all the center vertices of the stars, and u. Thus $|D| \leq p+q+1$ implying that

$$
|D| = \gamma(G) = p + q + 1.
$$
\n⁽⁵⁾

Now, let $S = \{c_1, c_2, \ldots, c_p\} \cup I$ and let $v_1, v_2, \ldots, v_{n-(p+q)}$ be the vertices of $V(G) \backslash S$. It is easy to check that $\{S, \{v_1\}, \{v_2\}, \ldots, \{v_{n-(p+q)}\}\}\$ is a c-partition of G with cardinality $n - (p + q) + 1$. Therefore $C(G) \geq n - (p + q) + 1$. Combining this with (5), we get the desired result.

In both cases, we have shown that $C(G) = n - \gamma(G) + 2$.

Recall that a chord of a cycle is an edge joining two nonconsecutive vertices of the cycle.

Lemma 6 Let G be a graph. If $\gamma(G) = 2$, then G contains no odd cycle of length greater than 5.

Proof. Suppose for the sake of contraction that G contains an odd cycle $C: v_1-v_2\cdots$ $v_{2q+1}-v_1$ (in this order) with $q \geq 3$. Assume that C has minimum length among all odd cycles of G. Observe that C has no chords, as otherwise, G would contain a smaller odd cycle C' such that $V(C') \subset V(C)$, which contradicts the choice of C. Let $D = \{x, y\}$ be a γ -set of G, and consider the following two cases.

Case 1. One of x and y, say x lies on C .

Without loss of generality, we can let $x = v_1$. Since C has no chords, the neighbors of x on C are exactly v_2 and v_{2q+1} . Next, we consider two possibilities, depending on whether y lies on C or not.

Possibility 1. $y \in C$. Similarly, y is adjacent to exactly two vertices of C. Thus D can dominate at most 6 vertices on C (two vertices dominated by x and two by y , plus x and y themselves). However, C contains $2q+1 \geq 7$ vertices, meaning that D cannot dominate all vertices of C , a contradiction.

Possibilty 2. $y \notin C$. Since D is a γ -set of G, y must dominate all the remaining vertices of C, in particular v_3 and v_4 . But then $\{y, v_3, v_4\}$ induces a triangle, a contradiction.

Case 2. Neither x nor y lies on C .

Since D is a γ -set of G and C is odd, by the pigeonhole principle, one vertex in D, say x must be adjacent to two consecutive vertices of C , meaning that x is adjacent to v_i and v_{i+1} for some i in $\{1, 2, \ldots, 2q+1\}$. But in this case, $\{x, v_i, v_{i+1}\}$ induces a triangle, a contradiction.

In both cases, we have a contradiction and thus the required is done.

We are now ready to prove Theorem 4.

Proof of Theorem 4. The sufficiency is immediate for $G \in \{C_5, K_2 + \overline{K}_p \ (p \geq 1), \overline{K}_n\}$ $(n \geq 2)$. Furthermore, if G is a member of $\mathcal{G} \cup \mathcal{H}$, it follows directly from Lemma 5. To establish the necessity, let G be traingle-free graph of order $n \geq 2$ and set

$$
k = n - \gamma(G) + 2. \tag{6}
$$

If $k \leq 3$, then (6) yields $\gamma(G) \in \{n, n-1\}$ implying that G is isomorphic to \overline{K}_n or $K_2 + \overline{K}_{n-2}$ $(n \geq 3)$. So, assume that $k \geq 4$ and let $\pi = \{V_1, V_2, \ldots, V_k\}$ be a c-partition of G. If $\gamma(G) = 1$, then (6) becomes $k = n + 1$, contradicting (1). Thus $\gamma(G) \geq 2$. Based on this, we consider two cases.

Case 1. $\gamma(G) > 3$.

Then $n = k + \gamma(G) - 2 \geq 5$. Assume that $|V_1| \geq |V_i|$ for all $i \geq 2$ and define two subsets A and B of $V(G)$ as follows:

- $A = \{x \in V(G) \backslash V_1 : x \text{ has a neighbor in } V_1\},\$
- $B = V(G) \setminus (V_1 \cup A).$

Clearly V_1 , A and B are pairwise disjoint sets and $V(G) = V_1 \cup A \cup B$. Let I (possibly empty) be the set of isolated vertices in G.

Claim 1.

(i) $|V_i| = 1$ for each $i \neq 1$, and $|V_1| = \gamma(G) - 1 \geq 2$.

- (ii) For all $i \geq 2$, V_i must necessarily form a coalition with V_1 .
- (iii) $|B| = 1$, A is a nonempty independent and further $A \cup B$ induces a star centered at the unique vertex of B. As consequence, $I \subseteq V_1$.
- (iv) V_1 is an independent that contains I as a subset and $V_1 \setminus I \neq \emptyset$.
- (v) Every vertex in $V_1 \backslash I$ has at least two neighbors in A, and every vertex in A has exactly one neighbor in $V_1 \backslash I$.

Proof of Claim 1. (i) Assume without loss of generality that V_1 forms a coalition with V_2 . Clearly,

$$
|V_1| + |V_2| \ge \gamma(G). \tag{7}
$$

Suppose to the contrary that for some $i_0 \geq 3$, $|V_{i_0}| \geq 2$. Using (7), we get:

$$
|V_1| + |V_2| + |V_{i_0}| \ge \gamma(G) + 2,\tag{8}
$$

which, combined with (3) implies that $n \geq \gamma(G) + k - 1$, Contradicting (6). Hence,

$$
|V_i| = 1 \text{ for each } i \ge 3. \tag{9}
$$

It remains to show that $|V_2| = 1$ and $|V_1| = \gamma(G) - 1$. Indeed, by (9) and (3), we have:

$$
n = |V_1| + |V_2| + k - 2. \tag{10}
$$

Substituting k with $n - \gamma(G) + 2$ into (10), we get

$$
|V_1| + |V_2| = \gamma(G). \tag{11}
$$

Suppose to the contrary $|V_2| \geq 2$. Then by the choice of V_1 and (11),

$$
|V_2| \le |V_1| \le \gamma(G) - 2. \tag{12}
$$

Taking into account (9) together with (12) and the fact that $\gamma(G) \geq 3$, we see that the set V_i (for $i \geq 3$) does not form a coalition with any other set in π , a contradiction. Thus $|V_2| = 1$ and by (11), we have $|V_1| = \gamma(G) - 1$. As $\gamma(G) \geq 3$, it follows that $|V_1| \geq 2$.

(ii) Directly follows from (i) as $\gamma(G) \geq 3$.

(iii) $B \neq \emptyset$, for otherwise V_1 forms a dominating set with cardinality $\gamma(G)-1$, a contradiction. Thus, pick $b \in B$. By (ii), $\{b\}$ must form a coaltion with V_1 . Therefore, since there is no edge between V_1 and B , it follows that $\{b\}$ must dominate all the other vertices of B. Combined with G being triangle-free, this implies that B is a clique with at most two vertices.

In view of (i), we know that $|\pi| = k = 1 + |A| + |B|$. As $|B| \le 2$ and $k \ge 4$, it follows that $A \neq \emptyset$. Let $a \in A$. Using reasoning similar to that for b, we deduce that $\{a\}$ dominates all vertices of B. Hence there are all possible edges between A and B. If $|B| > 2$, then two adjacent vertices in B together with some vertex in A would induce a triangle, contradicting the triangle-free property of G . Similarly, if A is not independent, then two adjacent vertices in A together with some vertex in B induce a triangle. Consequently, $A \cup B$ induces a star centered at the unique vertex in B.

iv) From (i) and (iii), we can let $v \in V_1$ and $B = \{b\}$. If v has a neighbor in V_1 , then, by considering (i) and (ii), the set $(V_1\backslash \{v\})\cup \{b\}$ is a dominating set of cardinality $\gamma(G)-1$, a contradiction. Hence V_1 is an independent set. The definition of A implies that $V_1 \setminus I \neq \emptyset$.

v) As V_1 is independent, every vertex in $V_1\setminus I$ must have at least one neighbor in A. Let $a \in A$ be a neighbor of v in A. If a is the only neighbor of v in A, then, by taking (i) and (ii) into consideration, we see that the set $(V_1 \setminus \{v\}) \cup \{a\}$ is a dominating set of cardinality $\gamma(G) - 1$, a contradiction. Thus every vertex in $V_1 \backslash I$ must have at least two neighbors in A, which implies $|A| \geq 2$.

Suppose now that a has another neighbor in $V_1 \backslash I$, say $v' \neq v$. In this case, $(V_1 \backslash \{v, v'\}) \cup$ ${a, b}$ forms a dominating set of cardinality $\gamma(G) - 1$, a contradiction again. Thus every vertex in A has exactly one neighbor in $V_1 \backslash I$. This finishes the proof of Claim 1.

By Claim 1, we see that $|V_1| \geq 2$, $|A| \geq 2$ and the subgraph induced by $(V_1\Y) \cup A$ consists of $p \geq 1$ stars, each contains at least three vertices, with a center in $V_1 \backslash I$ and leaves in A. Furtheremore, the set B contains a single vertex that is adjacent to all the vertices in A. From this, we conclude that $G \in \mathcal{G}$.

Case 2. $\gamma(G) = 2$.

Then from (6), it follows that $k = n \geq 4$, implying that each set in π is a singleton. If G is disconnected, Proposition 3-(ii) and the fact that G is triangle-free with $n \geq 4$ yield $G = 2K_2 \in \mathcal{H}$. Now, asume that G is connected. If $G = C_5$, we are done. Thus, we may assume that $G \neq C_5$. We assert that

$$
G \text{ is bipartite.} \tag{13}
$$

Suppose not, and let C be the shortest odd cycle in G, with vertex-set $V(C) = \{v_1, v_2, \ldots, v_t\}$ and edge-set $E(C) = \{v_1v_2, v_2v_3, \ldots, v_{t-1}v_t, v_tv_1\}$. By Lemma 6 and the triangle-free property of G, it follows that $t = 5$ and C is an induced cycle. Since $G \neq C_5$ and G is connected, there exists a vertex $u \in V(G)\backslash V(C)$ that is adjacent to some vertex in C, say v_1 . As G is triangle-free, u cannot be adjacent to v_2 , v_5 and to one of v_3 , v_4 (assume v_3 without loss of generality). Now, consider a set $\{w\}$ in π that forms a coalition with $\{u\}$. Such a set must dominate v_2, v_5 and v_3 . However, the set $\{w, v_2, v_3\}$ induces a triangle, a contradiction. Thus (13) holds.

By (13), we can write $V(G) = X_1 \cup X_2$, where X_1 and X_2 are the two parts of G. As G is connected and has no full vertex, it follows that $|X_1| \geq 2$ and $|X_2| \geq 2$.

Claim 2. Every vertex in X_1 has at most one non-neighbor in X_2 and vice versa. Moreover, if $X_1 \neq X_2$, then for each $i \in \{1, 2\}$, X_i contains at least one charismatic vertex.

Proof of Claim 2. Suppose on the contrary that there exists $j \in \{1,2\}$ such that X_j contains a vertex having two non-neighbors $u, v \in X_{3-j}$. In this case neither $\{u\}$ nor $\{v\}$ can form a coalition with any other set in π , a contradiction. To prove the second part, assume without loss of generality that $|X_1| > |X_2|$. For each $i \in \{1,2\}$, define

$$
Y_i = \{v \in X_i : v \text{ has exactly one non-neighbour in } X_{3-i}\}.
$$

Clearly $|Y_1| = |Y_2|$ and therefore $X_1 \backslash Y_1 \neq \emptyset$. Hence X_1 contains at least one charismatic vertex. If $X_2 \backslash Y_2 = \emptyset$, then any vertex in $X_1 \backslash Y_1$ cannot form a coalition with any other set in π , a contradiction. Thus $X_2 \ Y_2 \neq \emptyset$ implying that X_2 contains at least one vertex charismatic. This conclude the proof of Claim 2.

It follows from our preceding discussions that G is a member of the family H . This ends the proof of Theorem 4. \blacksquare

References

- [1] S. Alikhani, D. Bakhshesh, H. R. Golmohammadi, E. V. Konstantinova, Coalition of cubic graphs of order at most 10, arXiv:2212.10004v1, (2022).
- [2] S. Alikhani, D. Bakhshesh, H. R. Golmohammadi, E. V. Konstantinova, Connected coalitions in graphs, arXiv:2302.05754v1, (2023).
- [3] S. Alikhani, H. R. Golmohammadi, Introduction to total coalitions in graphs, Quaest. Math. 1–12 (2022).
- [4] D. Bakhshesh, M. A. Henning, D. Pradhan, On the coalition number of trees, arXiv:2111.08945v3, (2022).
- [5] D. Bakhshesh, M. A. Henning, D. Pradhan, Singleton Coalition Graph Chains, arXiv:2304.07606v1, (2023).
- [6] D. Bakhshesh, D. Pradhan, On the coalition number of graphs, arXiv:2111.08945v2, (2021).
- [7] J. Barat, Z. L. Blazsik, General sharp upper bounds on the total coalition number, arXiv:2301.09979v3, (2023).
- [8] C. Berge, Graphs, North Holland, (1985).
- [9] A. A. Dobrynin, H. R. Golmohammadi, On cubic graphs having the maximal coalition number, arXiv:2404.06245v2, (2024).
- [10] H. Golmohammadi, S. Alikhani, N. Ghanbari, I.I. Takhonov, A. Abaturov, Strong coalitions in graphs, arXiv:2404.11575v2, (2024).
- [11] X. Guana, M. Wangb, On the connected coalition number, arXiv:2402.00590v1, (2024).
- [12] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, CRC press, (2013).
- [13] T. W. Haynes, J. T. Hedetniemi, S. T. Hedetniemi, A. A. McRae, R. Mohan, Introduction to coalition in graphs, AKCE International Journal of Graphes and Combinatorics, Vol. 17, No. 2 653–659, (2020).
- [14] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae, R. Mohan, Upper bounds on the coalition number, Australas. J. Comb., 80(3) 442-453, (2021).
- [15] T. W. Haynes, J. T. Hedetniemi, S. T. Hedetniemi, A. A. McRae, R. Mohan, Coalition graphs, Communications in Combinatorics and Optimization,Vol. 8, No. 2 pp. 423-430, (2023).
- [16] T. W. Haynes, J. T. Hedetniemi, S. T. Hedetniemi, A. A. McRae, R. Mohan, Coalition graphs of paths, cycles and trees, Discuss. Math. Graph Theory, (2023).
- [17] T. W. Haynes, J. T. Hedetniemi, S. T. Hedetniemi, A. A. McRae, R. Mohan, Selfcoalition graphs, Opuscula Math., 43(2) 173-183, (2023).
- [18] A. Jafari, S. Alikhani, D. Bakhshesh, k-Coalitions in Graphs, arXiv:2407.09332v1, (2024).
- [19] D. A. Mojdeh, I. Masoumi, Edge coalitions in graphs, arXiv:2302.10926v1, (2023).
- [20] D. A. Mojdeh, M. R. Samadzadehb, Perfect coalition in graphs, arXiv:2409.10185v2, (2024).
- [21] O. Ore, Theory of graphs. Amer. Math. Soc. Transl., (Amer. Math. Soc., Providence, RI) 38 206–212, (1962).
- [22] M. R. Samadzadeh, D. A. Mojdeh, Independent coalition in graphs: existence and characterization. Ars Math. Contemp, (2024).
- [23] M. R. Samadzadeh, D. A. Mojdeh, R. Nadimi, Paired coalition in graphs, AKCE International Journal of Graphes and Combinatorics, (2024).