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Abstract : A coalition partition of a graph G = (V,E) is a partition of its
vertex-set into k ≥ 1 subsets V1, V2, . . . , Vk such that each subset Vi is either
(i) a singleton dominating set or (ii) not a dominating set but Vi ∪ Vj forms a
dominating set for some other subset Vj. Such a partition is called a c-partition.
The coalition number of a graph G, denoted C(G), is the largest number of
subsets in a c-partition of G. In this paper, we establish a new upper bound
for C(G) and characterize all triangle-free graphs achieving this bound.
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1 Introduction

In this paper, we consider only graphs that are finite, undirected and simple. Let G =
(V,E) be a graph of order n = |V | . The complement of a graph G = (V,E) is a graph
G defined on the same vertex set V, where two vertices are adjacent in G if and only
if are not adjacent in G. For a non-empty set A ⊆ V, we denote by G\A the subgraph
induced by V \A. For a vertex v of G, the degree of v is the number of edges incident
to v. A vertex of degree n − 1 is called a full vertex, while a vertex with degree zero is
called an isolated vertex. If all vertices of G are isolated, we call G an empty graph, and
we denoted it by Kn. The distance between two vertices u and v in a connected graph
G is the length of the shortest path between them. The diameter, denoted diam(G) of
a graph G is the maximum distance between any two vertices in G. The union of two
vertex-disjoint graphs G and H is the graph G+H whose vertex-set is V (G)∪V (H) and
edge-set is E(G) ∪ E(H). For a given graph H, a graph G is called H-free if G does not
contain H as an induced subgraph. A bipartite graph G is a graph whose vertex-set V can
be partitioned into two disjoint subsets V1 and V2 such that every edge in G connects a
vertex in V1 to a vertex in V2. A vertex v in V1 (respectively, in V2) is called a charismatic
vertex if it is adjacent to every vertex in V2 (respectively, in V1). If all vertices in V1
and V2 are charismatic, G is a complete bipartite and is denoted by Kp,q, where |V1| = p
and |V2| = q. As usual, Kn, Pn and Cn denote the complete graph, path and cycle on n
vertices, respectively. For other notation and terminology not defined here we refer the
reader to [8, 21].

A set D ⊆ V in a graph G is called a dominating set of G if every vertex not in D has
at least one neighbor in D. The domination number γ(G) of a graph G is the minimum
cardinality of a dominating set in G. A dominating set of G with cardinality γ(G) is
called a γ-set of G. The concept of the domination in graphs has been studied extensively
and several research papers have been published on this topic. For a survey on this area,
we refer the reader to [12].

For a given graph G with vertex set V, two subsets V1 and V2 of V are said to form
a coalition in G if neither V1 nor V2 is a dominating set, but their union V1 ∪ V2 is a
dominating set. A coalition partition (c-partition for short) in G is a partition of its vertex-
set into k subsets V1, V2, . . . , Vk such that every set Vi is either a singleton dominating set,
or is not a dominating set but forms a coalition with another set Vj (j 6= i).

The coalition number of a graph G, denoted by C(G), is the maximum k such that G
admits a c-partition of cardianlity k. A c-partition of G with k = C(G) is called a C(G)-
partition.

The concept of c-partition was first introduced and studied by Haynes et al. in [13]. They
proved that every graph G admits a c-partition and, as a consequence, deduced that every
graph G of order n ≥ 1 satisfies the following:

1 ≤ C(G) ≤ n. (1)

They also determined the exact coalition numbers for paths and cycles in [13]. The same
authors defined in [15] the notion of coalition graph and provided additional results in
[14, 16, 17]. Further studies have explored the c-partition problem in certain specific
classes of graphs. For instance, Bakhshesh et al. [4, 6] in trees and Alikhani et al. [1, 9]
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in cubic graphs. Other results regarding coalition partition for other parameters have
been undertaken by Alikhani et al. for total coalition in [3] and for connected coalition
in [2, 11]; Samadzadeh et al. for independent coalition in [22] and for paired coalition in
[23]; Jafari et al. [18] for k-coalition; Mojdeh et al. for perfect coalition in [20] and for
edge coalition in [19]; Golmohammadi et al. [10] for strong coalition. Further works on
this topic can be found in [5, 7].

The main purpose of this paper is to propose a new upper bound for C(G) and characterize
all triangle-free graphs that attain this bound.

2 Preliminary Results

We start this section by giving an upper bound for the coalition number C(G) in terms
of n and γ(G).

Theorem 1 Let G be a graph with order n and domination number γ. Then

C(G) ≤ n− γ(G) + 2. (2)

This bound is sharp.

Proof. For the case γ(G) = 1, the result is obvious from (1). So, assume that γ(G) ≥ 2.
Therefore G has no full vertex. Set k = C(G) and let π = {V1, V2, . . . , Vk} be a C(G)-
partition of G. Then, we can write

n = |V1|+ |V2|+ · · ·+ |Vk| . (3)

Without loss of generality, assume that V1 and V2 form a coalition. Then |V1|+|V2| ≥ γ(G).
Combining this with (3), we obtain

n ≥ |V1|+ |V2|+ k − 2 ≥ γ(G) + k − 2. (4)

This completes the proof.

The inequality (2) is sharp, for instance, for Kn, for Kp +Kn−p and for Kp +Kn−p (with
2 ≤ p ≤ n− 1), although this is not the case for complete graphs and stars. As γ(G) ≥ p
when G has p components, the following result is immediate from Theorem 1.

Corollary 2 If G is a graph of order n with p ≥ 2 connected components, then

C(G) ≤ n− p+ 2.

Proposition 3 Let G be a graph of order n, diameter diam(G), domination number γ
and with p connected components. If C(G) = n, then the following properties hold.

(i) γ(G) ≤ 2.

(ii) p ≤ 2, with equality if and only if G is the disjoint union of two complete graphs.
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(iii) If G is connected, then diam(G) ≤ 3.

Proof. (i) Follows from (2).

(ii) If p ≥ 3, then γ(G) ≥ 3, contradicting (i). Assume now that p = 2 and let G1 and
G2 be the two components of G. For each i in {1, 2}, let vi be any vertex in Gi. Since
C(G) = n, {v1} form a coalition with some singleton set in G2, say {v2}. In this case,
vi must be adjacent to all the other vertices in Gi. Thus G1 and G2 both are complete
graphs.

iii) Suppose that d ≥ 4 and assume that v0-v1-· · · -vd be a diametral path in G. In this
case, the set {v2} cannot form a coalition with any other singleton set, which contradicts
that C(G) = n.

3 Main result

Our aim result is the following.

Theorem 4 If G is a K3-free graph with at least two vertices, then equality holds in (2)
if and only if G ∈ G ∪H ∪ {C5, K2 +Kp (p ≥ 1), Kn (n ≥ 2)}.

The proof of Theorem 4 relies on the following definitions and lemmas.

Definition 1 (Family G) A graph G is in class G if it is obtained from p ≥ 1 disjoint
stars, each with at least three vertices, by adding a new vertex and connecting it to all the
leaves of the stars, and possibly adding some isolated vertices. When G has no isolated
vertices, it must hold that p ≥ 2.

Definition 2 (Family H) A graph G is in class H if its vertex set can be partitioned
into two disjoint classes X1 and X2 such that:

� G is bipartite with bipartition (X1, X2), where |X1| , |X2| ≥ 2.

� Every vertex in X1 (respectively, X2) has at most one non-neighbor in X2 (respec-
tively, X1).

� If |X1| 6= |X2| , then both X1 and X2 contain at least one charismatic vertex.

Remark that every member G of H is connected unless G is 2K2. In addition, G has no
full vertex, implying that γ(G) ≥ 2. Since, there exists a vertex u in X1 and a vertex v in
X2 such that u and v together dominate all vertices in G, it follows that γ(G) = 2.

The Figure 1 shows an example of three graphs : one is in the family G and the others
are in the family H, along with their domination numbers.
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γ(G) = 4 γ(H1) = 2 γ(H2) = 2

Figure 1: Example of three graphs G ∈ G and H1, H2 ∈ H with their domination numbers.

Lemma 5 Let G be a graph of order n ≥ 2 and domination number γ(G). If G is a
member of G ∪ H, then C(G) = n− γ(G) + 2.

Proof. From(2), it suffices to show that C(G) ≥ n − γ(G) + 2. If G ∈ H, then it
is straightforward to check that the partition of V (G) into n singleton substes is a c-
partition of G. Thus C(G) ≥ n = n − γ(G) + 2 (since γ(G) = 2 by the remark before
Lemma 5).

Assume now G ∈ G. Let D be a γ-set of G, and let I (possibly empty) denote the set
of isolated vertices in G, with q = |I| . Clearly I ⊆ D. For each i ∈ {1, 2, . . . , p}, let ci
be the center of the i-th star, and let u be the vertex adjacent to all leaves of the p ≥ 1
stars. By definition of G, we have p+ q ≥ 2. We first show that |D| = p+ q + 1. Indeed,
to dominate all vertices of G, the minimality of D requires that D must include all center
vertices together with I and exactly one vertex among V (G)\(I ∪ {c1, c2, . . . , cp}). This
imples that |D| ≥ p + q + 1. To establish equality, we construct a dominating set D of
size p + q + 1 by taking all vertices of I, all the center vertices of the stars, and u. Thus
|D| ≤ p+ q + 1 implying that

|D| = γ(G) = p+ q + 1. (5)

Now, let S = {c1, c2, . . . , cp} ∪ I and let v1, v2, . . . , vn−(p+q) be the vertices of V (G)\S. It
is easy to check that {S, {v1}, {v2}, . . . , {vn−(p+q)}} is a c-partition of G with cardinality
n − (p + q) + 1. Therefore C(G) ≥ n − (p + q) + 1. Combining this with (5), we get the
desired result.

In both cases, we have shown that C(G) = n− γ(G) + 2.

Recall that a chord of a cycle is an edge joining two nonconsecutive vertices of the cycle.

Lemma 6 Let G be a graph. If γ(G) = 2, then G contains no odd cycle of length greater
than 5.

Proof. Suppose for the sake of contraction that G contains an odd cycle C : v1-v2-· · · -
v2q+1-v1 (in this order) with q ≥ 3. Assume that C has minimum length among all odd
cycles of G. Observe that C has no chords, as otherwise, G would contain a smaller odd
cycle C ′ such that V (C ′) ⊂ V (C), which contradicts the choice of C. Let D = {x, y} be
a γ-set of G, and consider the following two cases.
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Case 1. One of x and y, say x lies on C.

Without loss of generality, we can let x = v1. Since C has no chords, the neighbors of x
on C are exactly v2 and v2q+1. Next, we consider two possibilities, depending on whether
y lies on C or not.

Possibility 1. y ∈ C. Similarly, y is adjacent to exactly two vertices of C. Thus D can
dominate at most 6 vertices on C (two vertices dominated by x and two by y, plus x and
y themselves). However, C contains 2q+1 ≥ 7 vertices, meaning that D cannot dominate
all vertices of C, a contradiction.

Possibilty 2. y /∈ C. Since D is a γ-set of G, y must dominate all the remaining vertices
of C, in particular v3 and v4. But then {y, v3, v4} induces a triangle, a contradiction.

Case 2. Neither x nor y lies on C.

Since D is a γ-set of G and C is odd, by the pigeonhole principle, one vertex in D, say x
must be adjacent to two consecutive vertices of C, meaning that x is adjacent to vi and
vi+1 for some i in {1, 2, . . . , 2q + 1}. But in this case, {x, vi, vi+1} induces a triangle, a
contradiction.

In both cases, we have a contradiction and thus the required is done.

We are now ready to prove Theorem 4.

Proof of Theorem 4. The sufficiency is immediate for G ∈ {C5, K2 +Kp (p ≥ 1), Kn

(n ≥ 2)}. Furthermore, if G is a member of G ∪H, it follows directly from Lemma 5. To
establish the necessity, let G be traingle-free graph of order n ≥ 2 and set

k = n− γ(G) + 2. (6)

If k ≤ 3, then (6) yields γ(G) ∈ {n, n − 1} implying that G is isomorphic to Kn or
K2 + Kn−2 (n ≥ 3). So, assume that k ≥ 4 and let π = {V1, V2, . . . , Vk} be a c-partition
of G. If γ(G) = 1, then (6) becomes k = n+ 1, contradicting (1). Thus γ(G) ≥ 2. Based
on this, we consider two cases.

Case 1. γ(G) ≥ 3.

Then n = k + γ(G)− 2 ≥ 5. Assume that |V1| ≥ |Vi| for all i ≥ 2 and define two subsets
A and B of V (G) as follows:

� A = {x ∈ V (G)\V1 : x has a neighbor in V1},

� B = V (G)\(V1 ∪ A).

Clearly V1, A and B are pairwise disjoint sets and V (G) = V1 ∪ A ∪ B. Let I (possibly
empty) be the set of isolated vertices in G.

Claim 1.

(i) |Vi| = 1 for each i 6= 1, and |V1| = γ(G)− 1 ≥ 2.
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(ii) For all i ≥ 2, Vi must necessarily form a coalition with V1.

(iii) |B| = 1, A is a nonempty independent and further A∪B induces a star centered at
the unique vertex of B. As consequence, I ⊆ V1.

(iv) V1 is an independent that contains I as a subset and V1\I 6= ∅.

(v) Every vertex in V1\I has at least two neighbors in A, and every vertex in A has
exactly one neighbor in V1\I.

Proof of Claim 1. (i) Assume without loss of generality that V1 forms a coalition with V2.
Clearly,

|V1|+ |V2| ≥ γ(G). (7)

Suppose to the contrary that for some i0 ≥ 3, |Vi0| ≥ 2. Using (7), we get:

|V1|+ |V2|+ |Vi0| ≥ γ(G) + 2, (8)

which, combined with (3) implies that n ≥ γ(G) + k − 1, Contradicting (6). Hence,

|Vi| = 1 for each i ≥ 3. (9)

It remains to show that |V2| = 1 and |V1| = γ(G)− 1. Indeed, by (9) and (3), we have:

n = |V1|+ |V2|+ k − 2. (10)

Substituting k with n− γ(G) + 2 into (10), we get

|V1|+ |V2| = γ(G). (11)

Suppose to the contrary |V2| ≥ 2. Then by the choice of V1 and (11),

|V2| ≤ |V1| ≤ γ(G)− 2. (12)

Taking into account (9) together with (12) and the fact that γ(G) ≥ 3, we see that the
set Vi (for i ≥ 3) does not form a coalition with any other set in π, a contradiction. Thus
|V2| = 1 and by (11), we have |V1| = γ(G)− 1. As γ(G) ≥ 3, it follows that |V1| ≥ 2.

(ii) Directly follows from (i) as γ(G) ≥ 3.

(iii) B 6= ∅, for otherwise V1 forms a dominating set with cardinality γ(G)−1, a contradic-
tion. Thus, pick b ∈ B. By (ii), {b} must form a coaltion with V1. Therefore, since there
is no edge between V1 and B, it follows that {b} must dominate all the other vertices of
B. Combined with G being triangle-free, this implies that B is a clique with at most two
vertices.

In view of (i), we know that |π| = k = 1 + |A| + |B| . As |B| ≤ 2 and k ≥ 4, it
follows that A 6= ∅. Let a ∈ A. Using reasoning similar to that for b, we deduce that {a}
dominates all vertices of B. Hence there are all possible edges between A and B. If |B| ≥ 2,
then two adjacent vertices in B together with some vertex in A would induce a triangle,
contradicting the triangle-free property of G. Similarly, if A is not independent, then two



8 S. KOUIDER AIAD, N. IKHLEF ESCHOUF, A. BENKACI, S. BOUROUBI

adjacent vertices in A together with some vertex in B induce a triangle. Consequently,
A ∪B induces a star centered at the unique vertex in B.

iv) From (i) and (iii), we can let v ∈ V1 and B = {b}. If v has a neighbor in V1, then, by
considering (i) and (ii), the set (V1\{v})∪{b} is a dominating set of cardinality γ(G)−1, a
contradiction. Hence V1 is an independent set. The definition of A implies that V1\I 6= ∅.

v) As V1 is independent, every vertex in V1\I must have at least one neighbor in A. Let
a ∈ A be a neighbor of v in A . If a is the only neighbor of v in A, then, by taking
(i) and (ii) into consideration, we see that the set (V1\ {v}) ∪ {a} is a dominating set of
cardinality γ(G) − 1, a contradiction. Thus every vertex in V1\I must have at least two
neighbors in A, which implies |A| ≥ 2.

Suppose now that a has another neighbor in V1\I, say v′ 6= v. In this case, (V1\ {v, v′})∪
{a, b} forms a dominating set of cardinality γ(G)− 1, a contradiction again. Thus every
vertex in A has exactly one neighbor in V1\I. This finishes the proof of Claim 1.

By Claim 1, we see that |V1| ≥ 2, |A| ≥ 2 and the subgraph induced by (V1\I)∪A consists
of p ≥ 1 stars, each contains at least three vertices, with a center in V1\I and leaves in
A. Furtheremore, the set B contains a single vertex that is adjacent to all the vertices in
A. From this, we conclude that G ∈ G.
Case 2. γ(G) = 2.

Then from (6), it follows that k = n ≥ 4, implying that each set in π is a singleton. If
G is disconnected, Proposition 3-(ii) and the fact that G is triangle-free with n ≥ 4 yield
G = 2K2 ∈ H. Now, asume that G is connected. If G = C5, we are done. Thus, we may
assume that G 6= C5. We assert that

G is bipartite. (13)

Suppose not, and let C be the shortest odd cycle inG, with vertex-set V (C) = {v1, v2, . . . , vt}
and edge-set E(C) = {v1v2, v2v3, . . . , vt−1vt, vtv1}. By Lemma 6 and the triangle-free prop-
erty ofG, it follows that t = 5 and C is an induced cycle. SinceG 6= C5 andG is connected,
there exists a vertex u ∈ V (G)\V (C) that is adjacent to some vertex in C, say v1. As G is
triangle-free, u cannot be adjacent to v2, v5 and to one of v3, v4 (assume v3 without loss of
generality). Now, consider a set {w} in π that forms a coalition with {u}. Such a set must
dominate v2, v5 and v3. However, the set {w, v2, v3} induces a triangle, a contradiction.
Thus (13) holds.

By (13), we can write V (G) = X1 ∪X2, where X1 and X2 are the two parts of G. As G
is connected and has no full vertex, it follows that |X1| ≥ 2 and |X2| ≥ 2.

Claim 2. Every vertex in X1 has at most one non-neighbor in X2 and vice versa.
Moreover, if X1 6= X2, then for each i ∈ {1, 2}, Xi contains at least one charismatic
vertex.

Proof of Claim 2. Suppose on the contrary that there exists j ∈ {1, 2} such that Xj

contains a vertex having two non-neighbors u, v ∈ X3−j. In this case neither {u} nor {v}
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can form a coalition with any other set in π, a contradiction. To prove the second part,
assume without loss of generality that |X1| > |X2| . For each i ∈ {1, 2}, define

Yi = {v ∈ Xi : v has exactly one non-neighbor in X3−i}.

Clearly |Y1| = |Y2| and therefore X1\Y1 6= ∅. Hence X1 contains at least one charismatic
vertex. If X2\Y2 = ∅, then any vertex in X1\Y1 cannot form a coalition with any other
set in π, a contradiction. Thus X2\Y2 6= ∅ implying that X2 contains at least one vertex
charismatic. This conclude the proof of Claim 2.

It follows from our preceding discussions that G is a member of the family H. This ends
the proof of Theorem 4.
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