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Abstract : This work is devoted to the study of linear and circular
k-separated subsets. Revisiting Kaplansky’s classical formula, we establish
new perspectives through refined bijective arguments and alternative proofs
that shed light on the structural properties of these families. In addition, we
derive several new combinatorial identities that both generalize and encom-
pass previously known results. Some of these identities arise naturally from
recurrence relations, while others are obtained via structural decompositions.
Taken together, these results not only extend Kaplansky’s framework but also
provide a unified approach to the enumeration of k-separated subsets, thereby
opening new directions for further research in algebraic and enumerative
combinatorics.
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1 Introduction and background

Enumerative problems involving separated elements on linear and circular arrangements
have been a source of continued interest in combinatorics. The most fundamental case,
which forbids direct adjacency between selected elements, was first solved by Kaplansky
in 1943 [3]. He provided exact formulas for the number of ways to choose k elements from
n such that no two are consecutive, both for arrangements on a line,

(
n−k+1

k

)
, and on a

circle, n
n−k

(
n−k
k

)
[3]. A more intricate set of constraints was later studied by Mansour and

Sun [5].

A further generalization, also considered by Kaplansky [4], involves selecting k-subsets
{x1, . . . , xk} from Zn. The condition is that for any two distinct xi, xj, their difference
modulo n cannot lie in {1, 2, . . . , s}, namely:

xi − xj 6≡ 1, 2, . . . , s (mod n).

Under the prerequisite that n ≥ ks + 1, Kaplansky showed that the count of these
subsets is:

n

n− ks

(
n− ks

k

)
.

2 s-separated subsets

Let E = {1, 2, . . . , n} be a finite set of integers. A subset A = {x1, x2, . . . , xk} of E,
with its elements arranged in ascending order 1 ≤ x1 < x2 < · · · < xk ≤ n, is said to
be s-separated if the difference between any two consecutive elements is at least s + 1.
We distinguish two categories of s-separated subsets, namely the linear and the circular
types, illustrated below for the case n = 10, k = 3, and s = 2:
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Notation 1 Throughout this article, fs(n, k) and gs(n, k) denote the numbers of linear
and circular s-separated subsets of {1, 2, . . . , n}, respectively. In accordance with Kaplan-
sky’s notation, the parameter s will be omitted when s = 1, i.e., we write f(n, k) and
g(n, k).
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Graph-theoretic interpretation. The enumeration of s-separated subsets finds a
natural counterpart in graph theory, specifically as a problem of counting independent
sets. An independent set, by definition, is a collection of vertices in a graph where no
two vertices are adjacent. This connection is most apparent in the base case where s = 1.
Here, selecting a 1-separated subset of size k from {1, 2, . . . , n} is precisely equivalent to
choosing an independent set of k vertices in the path graph Pn.

This framework readily generalizes to an arbitrary integer s, where the separation condi-
tion translates to a distance constraint on the graph: any two selected vertices must be
separated by a distance of at least s + 1. This interpretation extends naturally to the
circular arrangement by replacing the path graph Pn with the cycle graph Cn.

Thus, the enumeration of s-separated subsets corresponds to counting independent sets of
a fixed cardinality in graphs derived from paths and cycles, where the adjacency condition
is extended to a minimum distance requirement.

2.1 Linear s-separated subset

The condition for a linear s-separated subset can be formalized as follows:

x1 ≥ 1, xi − xi−1 ≥ s + 1 (2 ≤ i ≤ k), and xn ≤ n.

To solve this constrained counting problem, we employ a bijective transformation. Define
a sequence a sequence (yi)1≤i≤k+1 by the relations:

y1 = x1 − 1, yi = xi − xi−1 − (s + 1), ∀i ∈ {1, . . . , k} and yk+1 = n− xn.

Then we have y1 + y2 + · · ·+ yk+1 = n− 1− (k − 1)(s + 1),

yi ≥ 0, ∀i ∈ {1, . . . , k + 1}.
(1)

By the classical stars principal, the number of such solutions {y1, y2, . . . , yk+1} is given by
the binomial coefficient: (

n− (k − 1)s

k

)
.

Therefore, we obtain

fs(n, k) =

(
n− (k − 1)s

k

)
. (2)

Based on a double-counting argument, we can rederive fs(n, k) by partitioning the solutions
of System (1) according to the value of yk+1.

Fix yk+1 = j. The problem then reduces to counting the number of non-negative integer
k-tuples (y1, . . . , yk) satisfying:

y1 + y2 + · · ·+ yk = n− 1− (k − 1)(s + 1)− j. (3)

For a fixed j, the number of such solutions is given by the binomial coefficient:(
n− (k − 1)s− j − 1

k − 1

)
.



4 S. BOUROUBI

Summing over all admissible values of j, namely 0 ≤ j ≤ n− 1− (k− 1)(s+ 1), yields the
total. Finally, reindexing the sum via the change of variables i = j + 1 gives the identity:

fs(n, k) =

n−(k−1)(s+1)∑
i=1

(
n− (k − 1)s− i

k − 1

)
. (4)

The immediate consequence of this identity is the well-known hockey-stick identity [1, 6, 2]:(
N

r + 1

)
=

N−r∑
i=1

(
N − i

r

)
,

by setting r = k − 1, N = n− (k − 1)s.

2.2 Generalized recurrence relation

Kaplansky [3] proved the following relation for s = 1:

f(n, k) = f(n− 1, k) + f(n− 2, k − 1).

Building on Kaplansky’s approach [3], we derive a recurrence for the general s-adjacent
case, by partitioning the set of valid subsets based on the inclusion of the element n. We
consider two disjoint cases:

1. The subset does not contain n. In this case, we must choose k s-separated
elements from the set {1, 2, . . . , n− 1}. The number of ways to do so is fs(n− 1, k).

2. The subset contains n. If n is selected, the s-separation rule forbids choosing any
element from {n − s, . . . , n − 1}. The remaining k − 1 elements must therefore be
chosen from the set {1, 2, . . . , n− s− 1}. The number of ways is fs(n− s− 1, k− 1).

By the sum rule, adding the counts from these two cases yields the desired recurrence:

fs(n, k) = fs(n− 1, k) + fs(n− s− 1, k − 1).

2.3 Circular s-separated subset

A cornerstone in the study of k-separated subsets is the classical result of Kaplansky [3].

Proposition 1 (Kaplansky) Let n, k ∈ N with n ≥ k(s + 1). The number of circular
k-separated subsets of size k in {1, 2, . . . , n} is given by:

n

n− ks

(
n− ks

k

)
.

Despite the classical status of Proposition 1, we present a new proof based on a bijective
construction. This approach not only offers an alternative argument but also sheds light
on the underlying structure, serving as a foundation for several generalizations presented
in later sections.
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Bijective proof.

Let Gs(n, k) and Fs(n, k) denote the sets of circular and linear s-separated k-subsets
of E = {1, 2, . . . , n}, respectively. For an element a ∈ E, the s-neighborhood centered
at a, denoted Vs(a), is the set of 2s + 1 elements {a− s, . . . , a− 1, a, a + 1, . . . , a + s}
(operations are performed modulo n in the circular case). For instance, the figure bellow
illustrates the 2-neighborhood centered at 1 in E = {1, 2, . . . , 8}.
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Let us considere the two sets :

A = {(S, a) | S ∈ Gs(n, k), a ∈ S},

and
B = {(a, S) | a ∈ E, S ∈ Fs(n \ Vs(a), k − 1)}.

Define the mapping
ϕ : A −→ B, ϕ(S, a) = (a, S \ Vs(a)).

By construction ϕ is bijective. Consequently,

|A| = |B| =⇒ k gs(n, k) = n fs(n− 2s− 1, k − 1).

Applying formula (2), we deduce that:

gs(n, k) =
n

k

(
n− sk − 1

k − 1

)
.

Equivalently,

gs(n, k) =
n

k
· k

n− sk

(
n− sk

k

)

=
n

n− sk

(
n− sk

k

)
.

This completes the proof.

Although the bijective argument is enlightening, an algebraic approach yields deeper in-
sight into the underlying structure. We therefore present an algebraic proof.
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Algebraic proof.

In the circular setting, besides the constraints already imposed in the linear case, the
separation condition must also hold between the largest and the smallest elements of
A = {x1, x2, . . . , xk}. Formally, the conditions can be stated as:

x1 ≥ 1, xi − xi−1 ≥ s + 1 (2 ≤ i ≤ k), xk ≤ n, and n− xk + x1 ≥ s + 1.

These inequalities guarantee that, in the cyclic arrangement, there are at least s elements
of E separating any two consecutive members of A.

To count these subsets, we transform the problem by defining non-negative variables
(zi)1≤i≤k+1 that represent the sizes of the “excess” gaps between elements:

z1 = x1 − 1, zi = xi − xi−1 − (s + 1) for 2 ≤ i ≤ k, and zk+1 = n− xk.

The problem’s constraints imply that zi ≥ 0 for all i. Summing these variables reveals a
constant total:

z1 + z2 + · · ·+ zk+1 = n− 1− (k − 1)(s + 1).

Furthermore, the wrap-around condition n − xk + x1 ≥ s + 1 can be rewritten in terms
of our new variables as (n − xk) + (x1 − 1) ≥ s, which is simply zk+1 + z1 ≥ s. We are
therefore looking for the number of non-negative integer solutions to the system:z1 + z2 + · · ·+ zk+1 = n− 1− (k − 1)(s + 1),

zk+1 + z1 − s ≥ 0.
(5)

Setting zk+1 + z1 = l, System (5) can be rewritten as:z2 + · · ·+ zk = n− 1− (k − 1)(s + 1)− l,

s ≤ l ≤ n− 1− (k − 1)(s + 1).
(6)

Since zk+1 + z1 = l admits l + 1 solutions, we get:

gs(n, k) =

n−1−(k−1)(s+1)∑
l=s

(l + 1)

(
n− 2− (k − 1) s− l

k − 2

)
(7)

Set i = l + 1. Then Equation (7) becomes:

gs(n, k) =

n−(k−1)(s+1)∑
i=s+1

i

(
n− (k − 1) s− (i + 1)

k − 2

)
· (8)

This settles the proof.

Now we are able to formulate our result as follows:

Theorem 2 The following identity holds:

n

n− ks

(
n− ks

k

)
=

n−(k−1)(s+1)∑
i=s+1

i

(
n− (k − 1) s− (i + 1)

k − 2

)
· (9)
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A direct consequence of Theorem 2 arises in the case s = 0. After simplification, this
yields the identity: (

n + 1

k + 2

)
=

n−k∑
i=1

i

(
n− i

k

)
.

We recognize this as an instance of the well-known binomial convolution identity [1],

n−b∑
i=a

(
i

a

)(
n− i

b

)
=

(
n + 1

a + b + 1

)
, a + b ≤ n,

corresponding to the specific parameters a = 1 and b = k.

3 Recurrence formula for fs(n, k)− gs(n, k)

A central objective of this section is to provide a formula for the difference fs(n, k)− gs(n, k),
given the constraint fs(n, k) > gs(n, k). We shall establish a recurrence relation that
governs this value, the proof of which relies on a combinatorial argument using the Prin-
ciple of Inclusion-Exclusion.

Theorem 3 The difference between fs(n, k) and gs(n, k) is given by:

fs(n, k)− gs(n, k) =
s∑

i=1

i fs(n− 2s− i− 1, k − 2).

Proof. Cutting the circle between 1 and n and unfolding it transforms any generalized
circular k-separated subset into a generalized linear k-separated subset. However, the
converse does not hold: the missing k-subsets (x1, . . . , xk) are precisely those satisfying:

(x1 − 1) + (n− xk) ≤ s− 1.

For each equation

(x1 − 1) + (n− xk) = j, j = 0, . . . , s− 1,

there are exactly (j+1) fs(n−2s−j−2, k−2) generalized linear k-separated subsets that
must be excluded. The multiplicative factor (j+1) arises from the number of nonnegative
integer solutions to j1 + j2 = j, j1, j2 ≥ 0, when setting x1 − 1 = j1 and n− xk = j2.

The next result is an immediate consequence of Theorem 3 obtained by setting s = 1. It
coincides with Kaplansky’s Matching Rounds Theorem [3].

Corollary 4 For all n and k ∈ N∗, n− 2k ≥ 0, we have:

g(n, k) = f(n, k)− f(n− 4, k − 2).
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4 Conclusion

This study reaffirms the foundational role of Kaplansky’s framework in the enumeration of
k-separated subsets, while also demonstrating that its scope can be significantly broadened
through bijective reasoning and structural decompositions. The novel combinatorial iden-
tities we have established illustrate how classical results can be unified and extended
within a cohesive algebraic and enumerative setting. This approach not only elucidates
the internal structure of k-separated families but also highlights the potential for such
methods to intersect with broader areas of discrete mathematics. We anticipate that
the perspectives outlined here-ranging from asymptotic analyses to applications in graph
theory and optimization-will stimulate further developments and deepen the understand-
ing of separation phenomena in combinatorics.
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