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Abstract : This paper presents a decision-making framework for optimizing
seismic source deployment in 3-D land exploration campaigns, a critical chal-
lenge for cost management in the oil industry. The framework seeks to balance
two often conflicting objectives: achieving high-quality geophysical data (cov-
erage, offset, azimuth) and improving operational efficiency (logistics, produc-
tivity, equipment use). A comprehensive mathematical programming model
was developed to integrate the various cost components and operational con-
straints. To address the complexity of the solution space, several optimization
techniques were investigated. In addition to classical methods such as Genetic
Algorithms and Simulated Annealing, an innovative hybrid approach was in-
troduced, combining Constraint Programming with GRASP and VNS heuris-
tics. Extensive simulations and sensitivity analyses validate the effectiveness
of the proposed framework, showing its ability to deliver solutions that are
both technically robust and economically efficient. The study thus provides a
valuable tool for the planning and execution of large-scale seismic surveys.
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1 Introduction and Background

The world’s energy security is heavily influenced by hydrocarbon-rich nations, whose
economic growth depends largely on the effective monetization of their vast oil and gas
reserves. These countries are therefore continuously confronted with both technical and
economic challenges.

One of the most critical challenges in petroleum exploration lies in the inherent trade-off
between the high cost of 3-D land seismic acquisition and the demand for high-resolution
subsurface data. While this technique is indispensable for identifying potential reservoirs,
it entails substantial logistical and financial burdens [1]. The design of 3-D land seismic
surveys is thus a pivotal stage in the Exploration and Production (E&P) lifecycle, aiming
to generate high-fidelity subsurface images that reduce the risks associated with drilling.
The underlying principle is to illuminate geological targets using acoustic energy from
seismic sources, with the reflected wavefield captured by an array of receivers.

The success of such surveys depends on meeting specific geophysical objectives, partic-
ularly those concerning fold coverage, offset, and azimuth distributions. These factors
collectively ensure adequate sampling of the subsurface. However, achieving these objec-
tives often conflicts with operational and economic constraints. For example, increasing
the density of sources and receivers enhances the signal-to-noise ratio and image resolu-
tion, but it also escalates costs, logistical complexity, and environmental footprint.

This cost-quality dilemma has long been recognized as the central challenge in seismic sur-
vey design, prompting extensive research into methodologies capable of delivering optimal
acquisition geometries under strict budgetary and operational constraints. A vast body
of literature addresses this issue, exploring approaches to reduce costs while maintaining
data integrity (see, for instance, [2, 3, 4].

The core optimization problem can therefore be formulated as strategically reducing the
number of seismic shot points-the primary driver of cost and time-while rigorously pre-
serving seismic image fidelity and ensuring comprehensive survey coverage.

This paper situates itself at the intersection of operations research and energy logis-
tics by presenting an in-depth study on the optimization of seismic source deployment.
It demonstrates the effectiveness of advanced metaheuristic frameworks in tackling this
computationally complex problem in oil exploration: the strategic reduction of seismic
source points while preserving the quality of acquired geophysical data. The findings
highlight the potential of operations research methodologies to enhance decision-making
and improve cost efficiency within the capital-intensive energy industry.

2 Three-Dimensional Onshore Seismic Acquisition

This section outlines the technical principles of seismic acquisition in petroleum explo-
ration. It begins with the fundamental concepts and objectives of this geophysical method.
A detailed description of the essential components of a seismic acquisition system, includ-
ing sources, receivers, and shots, is then presented. Emphasis is placed on the critical role
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these elements play in ensuring the quality of the acquired data. The main stages of the
acquisition process are subsequently reviewed, from logistical planning through to data
interpretation. The section concludes by addressing the optimization of seismic surveys,
considering the technical, economic, and operational constraints that influence both the
quality of subsurface imaging and the overall cost of the survey.

2.1 Seismic Acquisition

Seismic acquisition is a geophysical method used to map subsurface structures through
the analysis of seismic waves. A seismic source, such as a vibroseis truck or an explo-
sive charge, generates waves that propagate through geological layers. As these waves
encounter interfaces between different rock formations, they are reflected or refracted. By
analyzing the travel times of the waves recorded by surface receivers, known as geophones,
it is possible to reconstruct a detailed image of the subsurface. This information provides
valuable insights into geological structures and the types of formations present.

2.2 Acquisition System Components

A seismic acquisition system relies on the interaction of several essential components:
seismic sources, receivers (or geophones), the generated waves, and the recorded seismic
traces. Each of these elements has a direct impact on the quality of the acquired data,
the resolution of subsurface images, as well as the cost and operational feasibility of the
survey [5, 6, 7]. Figure 1 illustrates the spatial arrangement of sources and receivers in a
two-dimensional linear acquisition geometry.

Figure 1: Workflow of the Seismic Data Acquisition Process.
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The principal objectives of seismic acquisition include:

� Geological Characterization: To produce a detailed seismic image of the sub-
surface in order to precisely delineate structural and stratigraphic traps capable of
hosting hydrocarbon accumulations.

� Uncertainty Mitigation: To reduce exploration risk by constraining geological
models and providing a clearer understanding of subsurface formations, which is
critical for guiding well-placement decisions.

� Economic Optimization: To maximize the economic return of exploration cam-
paigns by identifying high-potential zones, thus optimizing drilling programs and
enhancing the probability of commercial success.

Three-dimensional seismic surveys, which distribute sources and receivers in a grid-like
geometry (Figure 2), are designed to achieve homogeneous subsurface coverage and high-
resolution data. In a typical orthogonal layout, for instance, geophones are deployed in
parallel lines while source points are positioned on perpendicular lines. Every aspect
of this design, such as positioning sources between receiver lines to optimize azimuthal
distribution, directly influences both data quality and survey expense. Therefore, the
fundamental challenge in seismic acquisition design is to achieve an optimal trade-off
between minimizing source and geophone costs while ensuring the fidelity of the acquired
geophysical data.
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Figure 2: Schematic of an orthogonal 3D seismic acquisition geometry.

For the subsequent analysis, we adopt an orthogonal split-spread geometry for the source
and receiver layout as depicted in Figure 3 see Douglas J. Morrice et al. [8].
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Figure 3: Illustration of the patch and a source rack.

3 Related Work

Current research in seismic acquisition optimization can be broadly classified into two
categories: physics-driven modeling approaches and combinatorial optimization methods.

(I) Physics-driven approaches rely on geophysical forward models and inversion tech-
niques to determine acquisition geometries that maximize subsurface image quality. Clas-
sical methods include ray-tracing based modeling [16, 17] and wave-equation simulations
[18], which provide accurate estimates of illumination and resolution. More recent studies
incorporate Bayesian formulations to quantify uncertainty and optimize acquisition under
prior geological knowledge [19, 20]. While these approaches are physically rigorous, they
are computationally expensive and often impractical for large-scale 3D surveys, where
millions of potential shot and receiver positions must be evaluated. Furthermore, their
reliance on precise velocity models makes them sensitive to modeling errors.

(II) Combinatorial optimization methods, on the other hand, directly explore the
discrete design space of possible source and receiver placements. Metaheuristics such as
Genetic Algorithms [21, 22], Simulated Annealing [23], and Particle Swarm Optimiza-
tion [24] have been widely applied to maximize coverage, minimize acquisition cost, and
satisfy operational constraints. For example, [25] applied a GA-based framework that iter-
atively refines survey geometries by combining and mutating candidate layouts, selecting
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those that maximize illumination uniformity. Similarly, [24] used PSO to balance imag-
ing quality with logistic constraints such as terrain accessibility. More recently, hybrid
methods combining constraint programming with metaheuristics have been proposed to
handle multi-objective settings [25, 26]. These approaches are more scalable and flexible,
yet they may converge to suboptimal local solutions and often require careful parameter
tuning.

4 Mathematical Formulation and Analysis

To address the critical challenge of designing cost-effective onshore seismic surveys, we
present a mathematical optimization model. This model is engineered to guarantee
sufficient geophysical coverage while simultaneously minimizing overall expenses. Our
methodology, adapted and slightly modified from the established framework of Morrice
et al. [8], seeks to achieve an optimal equilibrium between geophysical quality and eco-
nomic viability. This is accomplished by meticulously determining the ideal values for
key decision variables, such as geophone line spacing, the number of shots, and receiver
mobility. These determinations are made subject to a comprehensive set of geometric,
operational, and logistical constraints. The ultimate goal is to define a source and receiver
layout that is both geophysically effective and economically sound. Table 1 provides a
detailed specification of these decision variables, while Table 2 enumerates the symbols
representing the problem data, which are presumed to be fixed and known for any given
problem instance.

4.1 Objective function

The first step involves defining the objective function, which is to minimize total acquisi-
tion costs per km2. This can be further subdivided and reformulated as: Minimize (Total
cost of geophones + Total cost of shots + Total crew cost).

� The total cost of deploying geophones consists of:

– Geophone installation cost: Cinst = Cdep ×
1

x2x3

,

– Daily operating cost of active geophones: Cactive = Cdayx5(1 + I)
x8

x9

·

� The total shooting cost: Cshots = (Cshot + Csurv)x8,

� The total crew cost: Ccrews = Ccrew ×
x8

x9

,

where
1

x2x3

and
x8

x9

represent the number of geophones and the number of days required

to complete the coverage per km2, respectively.

By combining the three different costs to minimize, the objective function can be expressed
as follows:

Min Ctotal = Cinst + Cactive + Cshots + Ccrews. (1)
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Symbole Description

x1 Shot line spacing

x2 Receiver line spacing (or Geophone line spacing)

x3 Receiver interval (in-line)

x4 Shot interval (in-line)

x5 Total number of active receivers

x6 Number of active receiver lines

x7 Number of receivers per line

x8 Shot density (shots per km2)

x9 Number of shots per day

x10 Number of receivers moved per day

x11 Half the number of active receiver lines

Table 1: Definition of Decision Variables

Symbole Description Symbole Description

Cdep
Deployment cost per

receiver
OINmin Minimum inline offset

Cday
Daily cost per active

receiver
OCRmin Minimum crossline offset

Cshot Cost per shot Omin Minimum diagonal offset

Csurv Surveying cost per shot Omax
Maximum diagonal

offset

Ccrew Daily crew cost Tmax
Maximum number of

shots per day

I Inflation factor Gmax
Maximum number of

receivers moved per day

Bx Inline bin size Cmax
Maximum available

receiver capacity

By Crossline bin size ai
Lower bound for

decision variable xi

F Fold (seismic coverage) bi
Upper bound for

decision variable xi

Table 2: Model Parameters
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4.2 Problem constraints

The comprehensive set of constraints can be categorized into four primary groups: Seismic
Image Quality constraints, Operational constraints, Geometric Consistency constraints,
and General constraints.

4.2.1 Seismic Image Quality constraints

� Fold : x5x8BxBy ≥ F .

This ensures a minimum fold value, F , to guarantee sufficient signal-to-noise ratio
and improve the resolution of the subsurface image.

� Offset maximal inline:
x5

x6

× x3

2
− x3

2
≥ OINmin.

This ensures that the maximum distance between a source and a receiver in the
inline direction is greater than or equal to a threshold OINmin. This condition
enables the capture of deep signals with a sufficient offset.

� Offset maximal crossline:
x6

2
× x2 −

x4

2
≥ OCRmin.

This ensures a minimum distance between receivers and sources in the perpendicular
(crossline) direction, in order to guarantee adequate lateral coverage.

� Offset radial maximal :

(
x5

x6

× x3

2
− x3

2

)2

+
(x6

2
× x2 −

x4

2

)2

≥ O2
max.

This ensures that the maximum diagonal distance (radial offset) between a source
and a receiver is sufficiently large, reaching the threshold Omax, which is necessary
for exploring greater depths.

� Offset radial minimal : x2
4 + x2

3 ≤ O2
min.

This ensures that the minimum diagonal distance between sources and receivers
remains below a threshold Omin, which is essential for capturing shallow signals.

4.2.2 Operational constraints

� Daily shot limit : x9 ≤ Tmax.

This limites the number of seismic shots per day to the production team’s maximum
capacity, in order to comply with human and technical constraints in the field.

� Daily shot limit : x10 ≤ Gmax.

This restrictes the number of geophones that can be relocated daily, depending on
the available logistical resources (vehicles, operators, time, etc.).

� Activity synchronization: x9x4x1 = x10x3x2.

Ensuring synchronization between seismic shots and geophone relocation, in order
to maintain continuous production without logistical interruptions.



Seismic Source Optimization for Petroleum Exploration 9

� Capacité maximale des équipements : (1 + I)x5 ≤ Cmax.

This verifies that the total number of geophones used, adjusted for the technolog-
ical inflation factor I, remains less than or equal to the maximum capacity of the
equipment available on site.

4.2.3 Geometric Consistency constraints

� Inline bin size: x3 ≤ 2Bx.

This ensures that the spacing between geophones along a line does not exceed a
value compatible with the inline bin size Bx, in order to guarantee homogeneous
seismic coverage in the receiver line direction.

� Crossline bin size: x4 ≥ 2By.

This ensures that the spacing between sources is sufficiently large relative to the
crossline bin size By, in order to achieve regular coverage perpendicular to the
receiver lines.

� Shot density : x8 =
1

x4x1

·

This ensures a regular shot density per km2, by balancing the spacing between
sources and the distance between shot lines.

� Geometry of geophone lines : x5 = x6x7.

This defines the total number of geophones as the product of the number of lines
and the number of geophones per line, thereby ensuring a regular structure of the
receiver network.

� Geophone line parity : x6 = 2x11.

This imposes that the number of geophone lines is even, which is essential to obtain
symmetric coverage during acquisition.

4.2.4 General constraints

� Decision variable bounds : ai ≤ xi ≤ bi, ∀i ∈ {1, . . . , 11}.

� Real variable domain: xi ∈ R∗+, ∀i ∈ {1, 2, 3, 4}.

� Integer variable domain: xi ∈ N∗, ∀i ∈ {5, . . . , 11}.
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The complete mathematical formulation is given by:



Min Ctotal =
Cdep

x2x3
+ Cday(1 + I)

x5x8

x9
+ (Cshot + Csurv)x8 + Ccrew

x8

x9
,

s.t. x5x8 ≥
F

BxBy
,

x3

2

(
x5

x6
− 1

)
≥ OINmin,

x2x6 − x4

2
≥ OCRmin,(

x3x5

2x6
− x3

2

)2

+

(
x2x6 − x4

2

)2

≥ O2
max,

x2
4 + x2

3 ≤ O2
min,

x9 ≤ Tmax, x10 ≤ Gmax,

x1x4x9 − x2x3x10 = 0,

x5 ≤
Cmax

1 + I
,

x3 ≤ 2Bx,

x4 ≥ 2By,

x1x8x4 = 1,

x5 − x6x7 = 0,

x6 = 2x11,

xi ∈ R∗+, ∀i ∈ {1, . . . , 4}, xi ∈ N∗, ∀i ∈ {5, . . . , 11}.

The proposed optimization model falls into the class of Mixed-Integer Nonlinear Pro-
gramming (MINLP) problems, characterized by integer decision variables, quadratic con-
straints, and nonlinear fractional terms. It can be interpreted as a constrained covering
problem, where the objective is to ensure adequate coverage of the study area with a
minimal number of seismic shots while adhering to geometric, technical, and operational
requirements. Owing to its inherently non-convex structure, the problem belongs to the
NP-hard complexity class, which makes the search for exact solutions computationally
intractable for large-scale instances. To overcome these difficulties, we rely on heuris-
tic and approximation approaches, particularly metaheuristics, which are well-suited to
generating high-quality feasible solutions within reasonable computational times.

Our optimization strategy is specifically designed to reduce the number of seismic shots by
enlarging the spacing between shot lines. To compensate for the resulting decline in cover-
age, selective densification of receivers is introduced. This trade-off-between fewer sources
and denser receivers-substantially increases the number of discrete variables, thereby in-
tensifying the combinatorial complexity of an already challenging problem.
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5 Solution Approaches

Exact methods aim to provide guaranteed optimal solutions for a given problem; however,
their applicability is often limited when dealing with large-scale instances or complex con-
straints, such as those arising in the optimization of seismic acquisition campaigns. In
such contexts, approximate methods-and in particular metaheuristics-emerge as a rele-
vant alternative. They are capable of producing satisfactory solutions within reasonable
computational times while adapting effectively to the operational specificities of the field.

Metaheuristics are flexible optimization frameworks inspired by natural processes, de-
signed to deliver high-quality solutions through a balance of global exploration and local
exploitation [9]. Their strength lies in their ability to address complex optimization prob-
lems where traditional methods struggle.

In this study, four complementary approaches are investigated: Genetic Algorithm (GA),
Improved Particle Swarm Optimization (IPSO), Simulated Annealing (SA), and a hybrid
CP-GRASP-VNS method. Each of these techniques brings specific mechanisms for han-
dling mixed variables, satisfying structural constraints, and efficiently exploring vast and
intricate search spaces.

The remainder of this section is structured as follows. Subsection 1 presents the Genetic
Algorithm, highlighting its population-based search and genetic operators. Subsection 2
introduces the Improved Particle Swarm Optimization, focusing on its enhancements over
the classical PSO. Subsection 3 describes the Simulated Annealing method and its proba-
bilistic acceptance mechanism. Subsection 4 details the proposed hybrid CP-GRASP-VNS
approach, combining constructive and local search strategies for improved performance.
Finally, a comparative discussion is provided to underline the complementarities and po-
tential synergies among these approaches.

5.1 Genetic Algorithm (GA)

The origins of Genetic Algorithms go back to the 1960s with the pioneering work of
Holland, later extended and popularized by Goldberg [10]. GA is a stochastic global
optimization approach inspired by the mechanisms of natural evolution. It relies on the
principle of ”survival of the fittest” to progressively refine candidate solutions, without
requiring strong assumptions such as continuity or unimodality. Owing to this flexibility,
GA has been widely applied to complex optimization problems, where it often outperforms
traditional techniques, particularly in landscapes with multiple local optima. In a GA,
a population of potential solutions is maintained, with each individual represented as a
chromosome. Once decoded, the quality of each chromosome is assessed using a fitness
function. Based on these evaluations, selection operators-often using a biased roulette
wheel-identify promising candidates that undergo genetic operations such as crossover
and mutation, which emulate evolutionary processes. Newly generated offspring with
higher fitness replace weaker individuals from the previous generation. This iterative
process continues until a predefined termination condition is satisfied. In the proposed
approach, each candidate solution is represented as:

X =
(
x1, x2, x3, x4︸ ︷︷ ︸

real-valued

, x5, x6, x7, x8, x9, x10, x11︸ ︷︷ ︸
integer-valued

)
,
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where the first subset corresponds to real variables, while the second subset is associated
with integer ones. The crossover and mutation operators are simultaneously applied to
both subsets, with each type of variable processed independently.

The main parameters governing the algorithm can be summarized as follows: a population
of size N , in which all individuals respect the prescribed bounds, dependencies, and the
variable types (real or integer); the number of generations; the crossover probability Pc;
the mutation probability Pm; and the selection strategy (e.g., tournament or roulette).
The overall procedure of the genetic algorithm is summarized in Algorithm 1.

Algorithm 1 Genetic Algorithm

1: Input: Population size N , crossover probability Pc, mutation probability Pm, stop-
ping criterion

2: Output: Best individual found
3: Initialize the population P0 of size N
4: Evaluate the fitness of each individual
5: t← 0
6: while stopping criterion not met do
7: Select parents: Pparents ← Selection(Pt)
8: Poffspring ← ∅
9: while |Poffspring| < N do

10: Select two parents p1, p2 ∈ Pparents

11: if rand() < Pc then
12: (o1, o2)← Crossover(p1, p2)
13: else
14: (o1, o2)← (p1, p2) . No crossover, parents become offspring
15: end if
16: o ∈ {o1, o2}
17: if rand() < Pm then
18: o← Mutation(o)
19: end if
20: Add o to Poffspring

21: end while
22: Evaluate the fitness of Poffspring

23: Pt+1 ← Replacement(Pt, Poffspring)
24: t← t+ 1
25: end while
26: return best individual from Pt

5.2 Improved Particle Swarm Optimization (IPSO)

Building upon the standard Particle Swarm Optimization framework [14], the Improved
PSO (IPSO) is designed to overcome premature convergence and stagnation in local op-
tima. Unlike the conventional model, which updates particle velocities using fixed lin-
ear operators, IPSO introduces adaptive non-linear parameters and integrates mutation
mechanisms inspired by evolutionary algorithms. These modifications enhance the bal-
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ance between exploration and exploitation, thereby improving convergence stability and
robustness, especially for non-convex and high-dimensional optimization problems. A key
improvement lies in the adaptive inertia weight w, which governs particle behavior: higher
values encourage exploration, while lower values promote exploitation. To accelerate con-
vergence, w is dynamically reduced across iterations according to:

w(t) = wmax −
(
wmax − wmin

Tmax

)
t,

where, w(t) denotes the inertia at iteration t, wmax and wmin are its initial and final values,
and Tmax is the total number of iterations.

Furthermore, if a particle fails to improve its position over Smax consecutive iterations, a
random mutation is applied. To reinforce diversification, the swarm is also divided into
subgroups, each exploring distinct regions of the search space. The IPSO procedure is
summarized in Algorithm 2.

Algorithm 2 Particle Swarm Optimization (PSO)

1: Input: swarm size N , iterations T , inertia w, cognitive c1, social c2, search space X
2: Output: best solution gbest
3: Initialize xi (positions), vi = 0 (velocities) for i = 1, . . . , N
4: Evaluate f(xi), set pbesti ← xi
5: gbest← arg min f(pbesti)
6: for t = 1 to T do
7: for each particle i do
8: Generate r1, r2 ∼ U(0, 1)
9: vi ← wvi + c1r1(pbesti − xi) + c2r2(gbest− xi)

10: xi ← xi + vi
11: if xi valid then
12: Evaluate f(xi)
13: if f(xi) < f(pbesti) then pbesti ← xi
14: end if
15: if f(xi) < f(gbest) then gbest← xi
16: end if
17: end if
18: end for
19: end for
20: return gbest

5.3 Simulated Annealing (SA)

Simulated Annealing is a probabilistic metaheuristic inspired by the metallurgical anneal-
ing process [15], where a material is heated and gradually cooled to minimize structural
defects and reach a low-energy state. Analogously, the algorithm explores the solution
space by occasionally accepting solutions of inferior quality. This controlled acceptance
mechanism, particularly effective at high ”temperatures”, enables the search to escape
local optima. The acceptance probability is governed by a temperature parameter, which
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decreases according to a predefined cooling schedule. As the temperature decreases, the
algorithm progressively shifts from extensive exploration to focused exploitation of promis-
ing regions. Due to its conceptual simplicity and theoretical guarantees of global conver-
gence, SA has proven effective for tackling complex combinatorial optimization problems,
such as the traveling salesman problem and VLSI design. The main parameters govern-
ing the algorithm can be summarized as follows: the initial temperature T0, which must
be sufficiently high to allow the acceptance of about 80% of degrading moves at the be-
ginning; the final temperature Tf , typically set to 0.01 × T0 to ensure convergence; the
length of the plateau L(T ), corresponding to the number of iterations performed at each
temperature, often proportional to the problem size; and the cooling coefficient α, which
controls the rate of temperature decrease and influences the trade-off between solution
quality and computational time. The main steps of SA are summarized in Algorithm 3.

Algorithm 3 Simulated Annealing
1: Input: Objective function f , initial temperature T0, cooling schedule α, stopping

criterion
2: Output: Best solution found Sbest

3: Generate an initial solution S0

4: Initialize the temperature T0

5: Scurrent ← S0, Sbest ← S0

6: k ← 0
7: while stopping criterion not met do
8: for i = 1 to L(Tk) do
9: Generate S ′ ∈ N(Scurrent) (neighbor)

10: Compute ∆f = f(S ′)− f(Scurrent)
11: if ∆f ≤ 0 then
12: Scurrent ← S ′

13: if f(S ′) < f(Sbest) then
14: Sbest ← S ′

15: end if
16: else
17: Generate r ∼ U(0, 1)
18: if r < exp(−∆f/Tk) then
19: Scurrent ← S ′

20: end if
21: end if
22: end for
23: k ← k + 1
24: Update the temperature: Tk = α kT0, with 0.8 ≤ α ≤ 0.99
25: end while
26: return Sbest

5.4 Hybrid Method based on CP-GRASP-VNS

The CP-GRASP-VNS hybrid method integrates the complementary strengths of Con-
straint Programming (CP) [11], the Greedy Randomized Adaptive Search Procedure
(GRASP) [12], and Variable Neighborhood Search (VNS) [13] into a unified optimiza-
tion framework. First, CP is employed to generate feasible initial solutions by rigorously
enforcing the structural and logical constraints of the problem. Next, GRASP introduces
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adaptive randomness through a greedy yet randomized constructive process, which en-
hances solution diversity and mitigates the risk of premature convergence. Finally, VNS
systematically explores a sequence of neighborhood structures to balance intensification
and diversification, thereby improving the overall solution quality. By combining these
three strategies, the CP-GRASP-VNS method offers a robust and flexible approach, par-
ticularly well suited for large-scale and combinatorial optimization problems where tra-
ditional exact methods and standalone heuristics often prove insufficient. Algorithms 4
and 5 detail the GRASP Construct and VNS subprocedures, while Algorithm 6 presents
the overall method.

Algorithm 4 GRASP-Construct Algorithm
1: Input: Constraint Programming model (CP), parameter α
2: Output: Constructed solution Sc

3: Sc ← ∅
4: while the solution is not complete do
5: Generate the Restricted Candidate List (RCL)
6: Select a random element from the RCL (guided by α)
7: Add the element to the solution and propagate CP constraints
8: end while
9: return Sc

Algorithm 5 Variable Neighborhood Search (VNS)

1: Input: Initial solution S0, neighborhoods N = {N1, . . . , Nk}, stopping condition
2: Output: Best solution Sbest

3: Sbest ← S0

4: while stopping condition not met do
5: i← 1
6: while i ≤ k do
7: S ′ ← Shake(Sbest, Ni)
8: S ′′ ← LocalSearch(S ′)
9: if f(S ′′) < f(Sbest) then

10: Sbest ← S ′′

11: i← 1
12: else
13: i← i+ 1
14: end if
15: end while
16: end while
17: return Sbest
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Algorithm 6 CP-GRASP-VNS Algorithm
1: Input: Constraint Programming model (CP), GRASP parameters, VNS parameters
2: Output: Best solution found Sbest

3: Sbest ← ∅
4: Generate an initial feasible solution with CP S0

5: for i = 1 to IMax do
6: Scurent ← GRASP Construct(CP, α)
7: Scurent ← VNS(Scurent, CP)
8: if Scurent is better than Sbest then
9: Sbest ← Scurent

10: end if
11: end for
12: return Sbest

6 Implementation and Results

This section outlines the implementation of the GA, SA, PSO and CP-GRASP-VNS algo-
rithms, along with computational experiments based on real-world data from the “2023-
IFT-3D” project conducted by SONATRACH in In Amenas, upstream concession, located
in the Illizi Basin in southeastern Algeria (see Table 3). The study area, extending over
1720.39 km2, is characterized by smooth terrain with flat to gently undulating surfaces,
well-suited for deploying seismic equipment and facilitating field operations. Strategi-
cally, it is of high petroleum interest due to potential hydrocarbon-rich reservoirs in the
Devonian and Ordovician formations, and forms part of a large-scale seismic exploration
program aimed at improving subsurface knowledge and optimizing drilling plans.

We first describe the experimental setup, including the problem instances, parameter
configurations, and implementation environment. The subsequent analysis assesses the
efficiency and robustness of the proposed approaches in this specific context.

The computational findings are presented in the following subsections, where the perfor-
mance of the algorithms is examined in detail. In addition, the proposed optimization
model was solved using the LINGO solver, which is particularly suited for Mixed-Integer
Nonlinear Programming (MINLP). The resulting spatial configuration of seismic sources
satisfied all operational and technical constraints, confirming both the feasibility of the
solutions and the field applicability of the approach. Overall, these results validate the
model’s effectiveness and highlight its potential as a decision-support tool in real industrial
settings.

Table 4 reports the numerical values of the decision variables obtained from the model
solution.

The computational experiment yielded a solution within 0.27 seconds, achieving an ob-
jective function value of 3,552,433,311 DZD. All tests were performed on a personal
computer running an Intel® Core� i7-5600U CPU @ 2.60 GHz with 8 GB of RAM.

A dedicated software application was also developed to provide a flexible experimental
framework for testing heuristic and metaheuristic approaches. This platform integrates
the implementation of three well-established algorithms—Genetic Algorithm (GA), Parti-
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Parameter Value
Cdep 250
Cday 120
Cshot 5000
Csurv 1500
Ccrew 800000
I 0.3
Bx 0.015
By 0.015
F 348
OINmin 0.0075
OCRmin 0.0075
Omax 0.6
Omin 0.035
Tmax 3000
Gmax 5000
Cmax 48000

Table 3: Input data

Domain Variable Value
Continuous variables

[0.150, 0.20] x1 0.15
[0.060, 0.10] x2 0.10
[0.007, 0.01] x3 0.01
[0.030, 0.04] x4 0.030

Integer variables
[1500, 7000] x5 7000
[30, 60] x6 40
[100, 250] x7 175
[200, 500] x8 221
[1000, 2800] x9 1105
[3000, 5000] x10 5000
[15, 30] x11 20

Table 4: Values of the decision variables using LINGO

cle Swarm Optimization (PSO), and Simulated Annealing (SA)—together with the hybrid
method CP-GRASP-VNS. The unified environment ensures consistent testing conditions
across all methods, enabling a fair and systematic comparison of their performance.

The application is structured into four main modules: (i) a multi-method optimization
module, designed to compare the performance of the different algorithms under identical
conditions; (ii) an advanced visualization module, allowing the exploration of outcomes
through interactive graphics and detailed comparative tables; (iii) a customized parameter
management module, which provides full flexibility to configure, store, and reuse algorith-
mic settings; and (iv) a data management and reporting module, enabling the systematic
organization of input data and the generation of reproducible experimental reports. To-
gether, these modules form a comprehensive tool that ensures both methodological rigor
and practical usability in real-world experimental settings.

6.1 Obtained Results

The computational experiments conducted through the developed application provided
a comprehensive evaluation of the proposed methods. Each algorithm was executed un-
der identical conditions and on the same real-world data previously tested with LINGO,
thereby ensuring the fairness of the comparison. The multi-method optimization module
enabled a direct confrontation of the Genetic Algorithm (GA), Particle Swarm Opti-
mization (PSO), Simulated Annealing (SA), and the hybrid CP-GRASP-VNS, while the
advanced visualization module facilitated an in-depth analysis of the obtained solutions.
A summary of the main numerical results is reported in Table 5, which provides a detailed
comparison of solution quality and computational effort across the tested algorithms.

The results indicate that the hybrid CP-GRASP-VNS consistently outperforms the clas-
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sical metaheuristics in terms of both solution quality and robustness, particularly when
addressing large-scale and complex instances. Moreover, the parameter management mod-
ule proved to be an essential feature, as it allowed fine-tuning and reproducibility of the
experimental configurations. These findings confirm the relevance of the developed ap-
plication as both a decision-support tool and a research framework for the systematic
assessment of metaheuristic optimization strategies.

Variable LINGO GA SA PSO CP-GRASP-VNS
Continuous variables

x1 0.15 0.19 0.16 0.15 0.20
x2 0.10 0.10 0.10 0.10 0.10
x3 0.01 0.01 0.01 0.01 0.01
x4 0.03 0.04 0.04 0.03 0.04

Integer variables
x5 7000 6130 5944 7000 1500
x6 40 59 30 40 40
x7 175 222 221 175 100
x8 221 200 200 221 200
x9 1105 2576 2800 1105 2772
x10 5000 4992 4785 5000 3000
x11 20 17 15 20 15

Objective function (DZD) 35 524 333.11 29 011 919.65 28 788 593.37 35 524 330.29 27 949 676.76
Execution time (s) 0:27 0.76 0.16 1.53 3.59

Table 5: Comparison of results obtained by LINGO and the proposed algorithms

7 Results Analysis

As summarized in Table 5, the comparative analysis highlights the relative performance of
the investigated algorithms in terms of both solution quality and computational efficiency.
Beyond these technical outcomes, the financial dimension of the project remains central,
since it defines the contractual framework within which the proposed optimization ap-
proaches are applied. The results clearly demonstrate the decisive impact of reducing the
number of seismic shots on both total cost and project duration. The Hybrid Method,
which optimized not only the number but also the spatial distribution of shots, yielded the
lowest total cost of 27 949 676.76 DZD, compared with the 4,023,869,268.34 DZD
initially projected in the SONATRACH contract. This corresponds to a saving of more
than 774 million dinars, representing a substantial financial benefit for the project.

Scenario Total Cost (DZD) Savings (DZD)

Initial Contract Estimate 4,023,869,268.34 –
Hybrid Optimization Method 27 949 676.76 774,710,053.82

Table 6: Comparison of total project costs

In addition to cost reduction, the decrease in the number of shots significantly shortened
the overall project duration, from 241 days to 190 days. This gain of more than 50
days results directly from the reduced volume of field operations, particularly the daily
shooting activities, while still maintaining satisfactory geophysical coverage.
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Table 7: Comparison of project duration

Scenario Duration (days) Reduction (days)

Initial Contract Estimate 241 –
Hybrid Optimization Method 190 51

It is worth noting that, to balance the reduced number of shots, the number of geophones
was slightly increased. However, despite this additional deployment of sensors, the overall
cost still decreased. This confirms that the number of seismic shots is the dominant factor
shaping the final cost of a seismic survey.

Taken together, the economic and temporal gains underline that the number of shots
constitutes a strategic lever in the planning of seismic acquisition campaigns. A well-
calibrated reduction of this variable, combined with an efficient sensor layout, enables
optimal results without compromising data quality.

These findings highlight the importance of incorporating advanced optimization approaches
into survey design, as a means of simultaneously improving operational performance and
ensuring economic profitability.

8 Conclusion

This paper has presented a decision-making framework for optimizing seismic source de-
ployment in 3-D land exploration campaigns. By formulating a mixed mathematical pro-
gramming model and investigating advanced optimization techniques, including a novel
hybrid approach, the study has demonstrated the ability to balance geophysical data
quality with operational efficiency. The results confirm that such optimization methods
provide technically robust and economically efficient solutions, offering valuable guidance
for large-scale seismic survey planning in the oil industry.

Beyond its immediate application, the proposed framework also contributes to the broader
field of operations research by illustrating how metaheuristic strategies can be tailored
to address complex, real-world industrial challenges. The integration of cost, time, and
data quality considerations highlights the versatility of the approach and its potential for
adaptation to other domains requiring large-scale resource allocation and planning.

Furthermore, this study reinforces the importance of bridging theoretical optimization
models with practical implementation, ensuring that advanced mathematical techniques
translate into tangible benefits for industry. The findings not only provide actionable in-
sights for practitioners but also open avenues for future research, particularly in extending
hybrid optimization methods to multi-objective contexts and dynamic operational envi-
ronments.

Overall, this work underscores the strategic role of optimization in modern geophysical
exploration, demonstrating that carefully designed mathematical models can drive both
scientific progress and economic value in the energy sector.
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